GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • design  (2)
  • optimization  (2)
  • 1995-1999  (3)
  • 1
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 39 (1996), S. 1761-1774 
    ISSN: 0029-5981
    Keywords: optimization ; algorithms ; structural ; design ; comparative ; evaluation ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: Non-linear programming algorithms play an important role in structural design optimization. Fortunately, several algorithms with computer codes are available. At NASA Lewis Research Centre, a project was initiated to assess the performance of eight different optimizers through the development of a computer code CometBoards. This paper summarizes the conclusions of that research. CometBoards was employed to solve sets of small, medium and large structural problems, using the eight different optimizers on a Cray-YMP8E/8128 computer. The reliability and efficiency of the optimizers were determined from the performance of these problems. For small problems, the performance of most of the optimizers could be considered adequate. For large problems, however, three optimizers (two sequential quadratic programming routines, DNCONG of IMSL and SQP of IDESIGN, along with Sequential Unconstrained Minimizations Technique SUMT) outperformed others. At optimum, most optimizers captured an identical number of active displacement and frequency constraints but the number of active stress constraints differed among the optimizers. This discrepancy can be attributed to singularity conditions in the optimization and the alleviation of this discrepancy can improve the efficiency of optimizers.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 40 (1997), S. 2257-2266 
    ISSN: 0029-5981
    Keywords: multiple optimizers ; cascade ; design ; aircraft ; air breathing engines ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A research project to evaluate comparatively ten different non-linear optimization algorithms was completed recently. A conclusion was that no single optimizer could successfully solve all the 40 structural design problems in the test-bed, even though most optimizers successfully solved at least one-third of the problems. We realized that improvements to search directions and step lengths, available in the ten optimizers compared, were not likely to alleviate the convergence difficulties. For the solution of those difficult problems we have devised an alternate approach called, the cascade optimization strategy. The strategy utilizes several optimizers, one followed by another in a specified sequence, to solve a problem. A pseudo-random dumping scheme perturbs the design variables between the optimizers. The cascade strategy has been tested out successfully in the design of supersonic and subsonic aircraft configurations and air breathing engines for high-speed civil transport applications. These problems could not be successfully solved by an individual optimizer. The cascade optimization strategy, however, generated feasible optimum solutions for both aircraft and engine problems. This paper presents the cascade strategy, solution of aircraft and engine problems along with discussions and conclusions. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 38 (1995), S. 3087-3120 
    ISSN: 0029-5981
    Keywords: structures ; structural design ; optimization ; Lagrangian ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: The merits and limitations of the Optimality Criteria (OC) method for the minimum weight design of structures subjected to multiple load conditions under stress, displacement and frequency constraints were investigated by examining several numerical examples. The examples were solved utilizing the OC design code that was developed for this purpose at the NASA Lewis Research Center. This OC code incorporates OC methods available in the literature with generalizations for stress constraints, fully utilized design concepts, and hybrid methods that combine both techniques. It includes multiple choices for Lagrange multiplier and design variable update methods, design strategies for several constraint types, variable linking, displacement and integrated force method analysers, and analytical and numerical sensitivities. On the basis of the examples solved, the optimality criteria for general application were found to be satisfactory for problems with few active constraints or with small numbers of design variables. However, the OC method without stress constraints converged to optimum even for large structural systems. For problems with large numbers of behaviour constraints and design variables, the method appears to follow a subset of active constraints that can result in a heavier design. The computational efficiency of OC methods appears to be similar to some mathematical programming techniques.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...