GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Life and Medical Sciences  (1)
  • Protein degradation  (1)
  • 1995-1999  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 249 (1995), S. 155-161 
    ISSN: 1617-4623
    Keywords: Cytochrome c ; Protein stability ; Protein degradation ; Mitochondria ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Previous work has established that the N57I amino acid replacement in iso-1-cytochrome c from the yeast Saccharomyces cerevisiae causes an unprecedented increase in thermodynamic stability of the protein in vitro, whereas the N57G replacement diminishes stability. Spectrophotometric measurements of intact cells revealed that the N57I iso-l-cytochrome c is present at higher than normal levels in vivo. Although iso-1-cytochrome c turnover is negligible during aerobic growth, transfer of fully derepressed, aerobically grown cells to anaerobic growth conditions leads to reduction in the levels of all of the cytochromes. Pulsechase experiments carried out under these anaerobic conditions demonstrated that the N57I iso-l-cytochrome c has a longer half-life than the normal protein. This is the first report of enhanced stability in vivo of a mutant form of a protein that has an enhanced thermodynamic stability in vitro. Although the N57I protein concentration is higher than the normal level, reduced growth in lactate medium indicated that the specific activity of this iso-l-cytochrome c in vivo is diminished relative to wild-type. On the other hand, the level of the thermodynamically labile N57G iso-1-cytochrome c was below normal. The in vivo levels of the N57I and N57G iso-l-cytochrome c suggest that proteins in the mitochondrial intermembrane space can be subjected to degradation, and that this degradation may play a role in controlling their normal levels.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0749-503X
    Keywords: Batten's disease ; ATP synthase ; degradation ; mitochondria ; Saccharomyces cerevisiae ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The Saccharomyces cerevisiae gene BTN1, encodes a 408 amino acid putative integral membrane protein, which is 39% identical and 59% similar to the human Cln3p, whose mutant forms are responsible for Batten's disease and for a diminished degradation of mitochondrial ATPase synthase subunit c. Disruption experiments established that Btn1p is not essential for viability, mitochondrial function, or degradation of mitochondrial ATP synthase in yeast. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...