GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Engineering General  (2)
  • Civil and Mechanical Engineering  (1)
  • 1995-1999  (3)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 20 (1996), S. 489-516 
    ISSN: 0363-9061
    Keywords: cavity expansion ; critical state models ; plasticity ; pile installation ; normally and overconsolidated clays ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: Boundary value problems for hardening/softening soils, such as Cam-Clay, usually require the extensive use of finite element methods. Here analytical and semi-analytical solutions for the undrained expansion of cylindrical and spherical cavities in critical state soils are presented. The strain is finite, the initial cavity radius is arbitrary and the procedure applicable to any isotropically hardening materials. In all cases only simple quadratures are involved, and in the case of the original Cam-Clay a complete analytical solution can be found. In addition to providing models of the behaviour of displacement piles and pressuremeters these results also provide valuable benchmark solutions for verifying various numerical methods.
    Additional Material: 24 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 621-653 
    ISSN: 0363-9061
    Keywords: state parameter ; stress-state relation ; constitutive modelling ; plasticity ; critical state ; sand and clay ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: The purpose of this paper is to present a simple, unified critical state constitutive model for both clay and sand. The model, called CASM (Clay And Sand Model), is formulated in terms of the state parameter that is defined as the vertical distance between current state (v, p′) and the critical state line in v-ln p′ space. The paper first shows that the standard Cam-clay models (i.e. the original and modified Cam-clay models) can be reformulated in terms of the state parameter. Although the standard Cam-clay models prove to be successful in modelling normally consolidated clays, it is well known that they cannot predict many important features of the behavior of sands and overconsolidated clays. By adopting a general stress ratio-state parameter relation to describe the state boundary surface of soils, it is shown that a simple, unified constitutive model (CASM) can be developed for both clay and sand. It is also demonstrated that the standard Cam-clay yield surfaces can be either recovered or approximated as special cases of the yield locus assumed in CASM.The main feature of the proposed model is that a single set of yield and plastic potential functions has been used to model the behaviour of clay and sand under both drained and undrained loading conditions. In addition, it is shown that the behaviour of overconsolidated clays can also be satisfactorily modelled. Simplicity is a major advantage of the present state parameter model, as only two new material constants need to be introduced when compared with the standard Cam-clay models. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 23 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 19 (1995), S. 793-811 
    ISSN: 0363-9061
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: An infinite dilatant elastic-plastic soil mass contains a single cylindrical or spherical cavity within which a slowly increasing pressure is applied. The removal of the cavity pressure takes place after a partly plastic state of the soil has been reached. Closed form solutions for the stress and displacement fields in the soil during any stage of the unloading process are derived. The non-associated Mohr-Coulomb yield criterion is used to account for dilation of the soil during shearing. Large strains are taken into account by adopting an appropriate strain definition within the plastically deforming region.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...