GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cellulases  (1)
  • Civil and Mechanical Engineering  (1)
  • 1995-1999  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    World journal of microbiology and biotechnology 12 (1996), S. 537-542 
    ISSN: 1573-0972
    Keywords: Cellulases ; Lentinula edodes ; ligninases ; mushrooms ; Pleurotus sajor-caju ; Volvariella volvacea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract One of the most economically-viable processes for the bioconversion of many types of lignocellulosic wastes is represented by edible mushroom cultivation. Lentinula edodes, Volvariella volvacea and Pleurotus sajor-caju are three important commercially cultivated mushrooms which exhibit varying abilities to utilise different lignocellulosics as growth substrate. Examination of the lignocellulolytic enzyme profiles of the three species show this diversity to be reflected in qualitative variations in the major enzymic determinants (i.e. cellulases, ligninases) required for substrate bioconversion. For example, L. edodes, which is cultivated on highly lignified substrates such as wood or sawdust, produces two extracellular enzymes which have been associated with lignin depolymerisation in other fungi, (manganese peroxidase and laccase). Conversely, V. volvacea, which prefers high cellulose-, low lignin-containing substrates produces a family of cellulolytic enzymes including at least five endoglucanases, five cellobiohydrolases and two β-glucosidases, but none of the recognised lignin-degrading enzymes.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 22 (1998), S. 621-653 
    ISSN: 0363-9061
    Keywords: state parameter ; stress-state relation ; constitutive modelling ; plasticity ; critical state ; sand and clay ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: The purpose of this paper is to present a simple, unified critical state constitutive model for both clay and sand. The model, called CASM (Clay And Sand Model), is formulated in terms of the state parameter that is defined as the vertical distance between current state (v, p′) and the critical state line in v-ln p′ space. The paper first shows that the standard Cam-clay models (i.e. the original and modified Cam-clay models) can be reformulated in terms of the state parameter. Although the standard Cam-clay models prove to be successful in modelling normally consolidated clays, it is well known that they cannot predict many important features of the behavior of sands and overconsolidated clays. By adopting a general stress ratio-state parameter relation to describe the state boundary surface of soils, it is shown that a simple, unified constitutive model (CASM) can be developed for both clay and sand. It is also demonstrated that the standard Cam-clay yield surfaces can be either recovered or approximated as special cases of the yield locus assumed in CASM.The main feature of the proposed model is that a single set of yield and plastic potential functions has been used to model the behaviour of clay and sand under both drained and undrained loading conditions. In addition, it is shown that the behaviour of overconsolidated clays can also be satisfactorily modelled. Simplicity is a major advantage of the present state parameter model, as only two new material constants need to be introduced when compared with the standard Cam-clay models. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 23 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...