GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (1)
  • Kluwer  (1)
  • 1995-1999  (2)
Document type
Years
Year
  • 1
    facet.materialart.
    Unknown
    Kluwer
    In:  Aquatic Geochemistry, 4 . pp. 403-427.
    Publication Date: 2019-09-23
    Description: The methane concentration in the atmosphere andsurface water was surveyed along 58° N acrossthe North Sea. In addition, the vertical methanedistribution in the water column was determined at sixstations along the transect. The methane contents ofthe surface water as well as in the water column wereextremely inhomogeneous. Input by freshwater fromriver discharge and injection of methane from thesediment were both observed. The survey continued fromthe western side of the North Sea to the Elbe Riverestuary. The Elbe River appears to have low methaneconcentrations compared to other European rivers, itsaverage input into the North Sea is estimated to be70 nmol s-1 of methane. Near 58° N,1°40' E, an abandoned drill site releases about 25 % ofthe North Sea's emission of methane to the atmosphere.The advective methane transport induced by watercirculation was assessed for May 16, 1994, using a 3-DNorth Sea circulation model. For the period of thissurvey, the North Sea's source strength foratmospheric methane is estimated using in situwind velocities. In comparison to the advectivetransport by the water circulation, the gas flux tothe atmosphere appears to be the dominant sink ofNorth Sea methane. This flux is estimated to bebetween 1500 · 106 mol a-1 and 3100 ·106mol a-1, depending on the relationbetween wind speed and gas transfer velocity
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-06-29
    Description: Mixed methane–sulfide hydrates and carbonates are exposed as a pavement at the seafloor along the crest of one of the accretionary ridges of the Cascadia convergent margin. Vent fields from which methane-charged, low-salinity fluids containing sulfide, ammonia, 4He, and isotopically light CO2 escape are associated with these exposures. They characterize a newly recognized mechanism of dewatering at convergent margins, where freshening of pore waters from hydrate destabilization at depth and free gas drives fluids upward. This process augments the convergence-generated overpressure and leads to local dewatering rates that are much higher than at other margins in the absence of hydrate. Discharge of fluids stimulates benthic oxygen consumption which is orders of magnitude higher than is normally found at comparable ocean depths. The enhanced turnover results from the oxidation of methane, hydrogen sulfide, and ammonia by vent biota. The injection of hydrate methane from the ridge generates a plume hundreds of meters high and several kilometers wide. A large fraction of the methane is oxidized within the water column and generates δ13C anomalies of the dissolved inorganic carbon pool.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...