GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 42 (11-12). pp. 1933-1950.
    Publication Date: 2018-03-08
    Description: Recent measurements indicate the transatlantic extent of the Namib Col Current at depths of 1300-3000 m near Lat. 22 degrees S in the South Atlantic Ocean. This current forms a continuous circulation structure from the Namib Col on the Walvis Ridge to the western trough, though its characteristic change as deepwater with varying properties enters and leaves the current owing to a meridional flow component. Transport estimates from hydrographic sections on the Walvis Ridge and at 15 degrees W near the crest of the Mid-Atlantic Ridge indicate a strength of about 3 x 10(6) m(3) s(-1) The current is part of a larger-scale eastward Row at Lon. 25 degrees W; transport estimates across the salinity maximum core there show a similar strength. Associated with this high-salinity high-oxygen current is a basin-wide front in these properties of varying intensity (weaker in the east) marking the transition to deep water whose North Atlantic characteristics have been partly erased by mixing with Circumpolar Deep Water in the southwest South Atlantic. The water which finally crosses the Walvis Ridge is supplied both by the eastward flow of this (diluted) North Atlantic Deep Water and by a general southeastward interior flow from the northern Angola Basin. Evidence suggests that this deep water continues south in the eastern Cape Basin, leaving the South Atlantic near the African continent.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Sears Foundation of Marine Research
    In:  Journal of Marine Research, 53 (6). pp. 929-957.
    Publication Date: 2017-11-28
    Description: Two high-resolution hydrographic sections occupied during February, March 1989 in the western and eastern basins of the North Atlantic at 14.5N are combined to study the water mass structure and meridional mass and heat transports. Absolute velocities were determined using these data and an earlier section at 8N in a linear inverse analysis. Mass balance for several layers representing the main water masses in the region and a zero net divergence for the sum of geostrophic and Ekman transport between the two sections are assumed. Using the annual mean of Ekman transports (13.6 Sv, 14.5N), (15.2 Sv, 8N) based on the climatology by Isemer and Hasse (1985) the annual average fluxes for the sections at 8N and 14.5N have been calculated. For the annual mean the strength of the meridional overturning cell at 14.5N amounts to 15.9 Sv with an associated heat transport of 1.22 PW. A similar value can be obtained at 8N where the annual mean heat transport reaches 1.18 PW and the overturning cell measures 15 Sv. The total northward heat transport is strongly dominated by the wind-driven Ekman heat transport. 'In-situ' values of heat transport using the actual wind-driven transports for the respective months yield even higher estimates. Heat transport at 14.5N rises to 1.37 +/- 0.42 PW (February) and the maximum is now at the 8N section, 1.69 +/- 0.52 PW (May). Comparisons of our results with another tropical section at 11N occupied concurrently demonstrate the large variability in heat transport related to changes in the wind field. Due to extremely weak winds in the eastern Atlantic and a resulting low Ekman transport, the 'in-situ' value of heat transport through this section ranged between 0.30 +/- 0.18 PW and 0.59 +/- 0.18 PW depending on the value chosen for the Ekman transport. The lower of the two heat transport estimates results from calculations with the actual observed winds and the other using a monthly climatological mean. That even the computations with the climatological monthly mean give such a low heat transport points to additional changes in the baroclinic structures between 11N and 14.5N.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Institut für Meereskunde
    In:  Kieler Meeresforschungen, 26 (1). pp. 21-42.
    Publication Date: 2018-07-24
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research and Oceanographic Abstracts, 18 (2). pp. 179-191.
    Publication Date: 2016-09-22
    Description: A study is described which attempts to obtain information about the vertical correlation of ocean currents at frequencies higher than inertial. Current velocity and temperature data for sensor separations of 4–12 m were taken with a mooring at ‘Site D’. The coherence and phase spectra for velocity component pairs reveals that motions are rotational at low frequencies. A cut-off frequency exists above which coherence drops to low values. The limiting frequency coincides with the minimum Väisälä frequency of the total water column. These cross-spectral properties support the assumption that the motion in this frequency range is governed by internal wave dynamics. The coherence and phase spectra of temperature pairs indicate that a field of temperature structure is superimposed on the mean field which is weakly correlated to the field of motion.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research and Oceanographic Abstracts, 21 (8). pp. 597-610.
    Publication Date: 2016-09-22
    Description: An experiment is described which was aimed at testing assumptions and predictions of the internal wave model suggested by Garrett and Munk (1972). Two moorings were set at a depth of 2660 m with a horizontal separation of 920 m only. The results of current and temperature measurements on these moorings indicate that the field of motion is probably horizontally isotropic in the inertio-gravitational wave band. The limiting frequency for horizontal coherence is three times the frequency predicted by the theoretical model. The phase of the vertical coherence is stable over a wide frequency range and the coherence decreases towards higher frequencies. This may be due to coherent motion contaminated by uncorrelated noise at high frequencies. The results are basically in agreement with the theoretical model when taking a number of modes below 10.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research and Oceanographic Abstracts, 21 (1). pp. 37-46.
    Publication Date: 2018-03-08
    Description: When determining vertical velocity spectra from temperature time series and the mean vertical temperature gradient, restrictions may arise friom the existence of fine-structre. Phillips (1971) and Garrett and Munk (1971_ have shown that the fine-structure contamination of internal gravity wave spectra can be written as a function of some statistical properties of the internal wave field and the vertical wave number spectrum of the fine-structure. A consistent set of current and temperature data was obtained during an experiment at Site D to study this problem. The wave number spectrum of the vertical temperature fine-structure and the apparent frequently spectrum of internal waves are determined from these data. In contrast to the asasumptions in the above models, our fine-structure data imply a wave number spectrum proportional to (wave number)−3 in the range which is important here. Using the above set of data, a model is suggested to describe the effect of fine-structure on vertical velocity spectra computed with the mean vertical temperature gradient. It indicates a maximum fine-structure contamination of the true frequency spectrum of internal gravity waves in the middle of the internal wave band, with less contamination at low and high frequencies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Institut für Meereskunde
    In:  Berichte aus dem Institut für Meereskunde an der Christian-Albrechts-Universität Kiel, 101C . Institut für Meereskunde, Kiel, Germany, 18 pp.
    Publication Date: 2013-03-14
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-02-10
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...