GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (4)
Document type
Years
Year
  • 1
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Comprehensive studies of the electrical properties of Mg-doped bulk GaN crystals, grown by high-pressure synthesis, were performed as a function of temperature up to 750 °C. Annealing of the samples in nitrogen ambient modifies qualitatively their resistivity values ρ and the ρ(T) variation. It was found that our material is characterized by a high concentration of oxygen-related donors and that the charge transport in the studied samples is determined by two types of states, one of shallow character (Mg-related state, EA(approximate)0.15 eV), and the second one much more deep, E2(approximate)0.95 eV (above the valence band). Depending on the effective concentration of either states, different resistivities ρ can be observed: lower resistivity (ρ〈104 Ω cm at ambient temperature) in samples with dominant EA states and very high resistivity (ρ〉106 Ω cm at ambient temperature) in samples with dominant E2 states. For the first type of samples, annealing at Tann〈500 °C leads to a decrease of their resistivity and is associated with an increase of the effective concentration of the shallow Mg acceptors. Annealing of both types of samples at temperatures between 600 and 750 °C leads to an increase of the deep state concentration. The presence of hydrogen ambient during annealing of the low-resistivity samples strongly influences their properties. The increase of the sample resistivity and an appearance of a local vibrational mode of hydrogen at 3125 cm−1 were observed. These effects can be removed by annealing in hydrogen-free ambient. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 81 (2002), S. 232-234 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We have studied the influence of hydrostatic pressure on the light emission from cubic In0.1Ga0.9N. A qualitative difference between pressure dependence of photoluminescence peak energies for cubic and wurtzite symmetry InGaN/GaN quantum wells (QWs) was found. Cubic samples revealed magnitude of dEE/dP of 26–30 meV/GPa, practically independent of the QW width. Previous studies of the hexagonal InGaN/GaN structures showed that with increasing QW width dEE/dP changed between about 30 meV/GPa and 0 meV/GPa. This different behavior of two types of QWs can be explained by the lack of built-in electric field (along growth direction) in case of cubic structures. To describe pressure evolution of the optical transitions in cubic InGaN/GaN QWs and thick epitaxial layer, we use a simple k×p model based on the linear theory of elasticity. To reproduce the experimental data, it is necessary to invoke presence of In-rich fluctuations in the cubic In0.1Ga0.9N samples. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 79 (2001), S. 1483-1485 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We have studied the influence of hydrostatic pressure on the light emission from a strained GaN/AlGaN multiquantum well system. We have found that the pressure coefficients of the photoluminescence peak energies are dramatically reduced with respect to that of GaN energy gap and this reduction is a function of the quantum well thickness. The decrease of the light emission pressure coefficient may be as large as 30% for a 32 monolayer (8 nm) thick quantum well. We explain this effect by the hydrostatic-pressure-induced increase of the piezoelectric field in quantum structures. Model calculations based on the k×p method and linear elasticity theory reproduce the experimental results well, demonstrating that this increase may be explained by small anisotropy of the wurtzite lattice of GaN and a specific interplay of elastic constants and values of the piezoelectric tensor. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 76 (2000), S. 2409-2411 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A dramatic increase of the conduction band electron mass in a nitrogen-containing III–V alloy is reported. The mass is found to be strongly dependent on the nitrogen content and the electron concentration with a value as large as 0.4m0 in In0.08Ga0.92As0.967N0.033 with 6×1019 cm−3 free electrons. This mass is more than five times larger than the electron effective mass in GaAs and comparable to typical heavy hole masses in III–V compounds. The results provide a critical test and fully confirm the predictions of the recently proposed band anticrossing model of the electronic structure of the III–N–V alloys. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...