GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (7)
Document type
Years
Year
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Two biochemical deficits have been described in the substantia nigra in Parkinson's disease, decreased activity of mitochondrial complex I and reduced proteasomal activity. We analysed interactions between these deficits in primary mesencephalic cultures. Proteasome inhibitors (epoxomicin, MG132) exacerbated the toxicity of complex I inhibitors [rotenone, 1-methyl-4-phenylpyridinium (MPP+)] and of the toxic dopamine analogue 6-hydroxydopamine, but not of inhibitors of mitochondrial complex II–V or excitotoxins [N-methyl-d-aspartate (NMDA), kainate]. Rotenone and MPP+ increased free radicals and reduced proteasomal activity via adenosine triphosphate (ATP) depletion. 6-hydroxydopamine also increased free radicals, but did not affect ATP levels and increased proteasomal activity, presumably in response to oxidative damage. Proteasome inhibition potentiated the toxicity of rotenone, MPP+ and 6-hydroxydopamine at concentrations at which they increased free radical levels ≥ 40% above baseline, exceeding the cellular capacity to detoxify oxidized proteins reduced by proteasome inhibition, and also exacerbated ATP depletion caused by complex I inhibition. Consistently, both free radical scavenging and stimulation of ATP production by glucose supplementation protected against the synergistic toxicity. In summary, proteasome inhibition increases neuronal vulnerability to normally subtoxic levels of free radicals and amplifies energy depletion following complex I inhibition.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: In Guadeloupe, epidemiological data have linked atypical parkinsonism with fruit and herbal teas from plants of the Annonaceae family, particularly Annona muricata. These plants contain a class of powerful, lipophilic complex I inhibitors, the annonaceous acetogenins. To determine the neurotoxic potential of these substances, we administered annonacin, the major acetogenin of A. muricata, to rats intravenously with Azlet osmotic minipumps (3.8 and 7.6 mg per kg per day for 28 days). Annonacin inhibited complex I in brain homogenates in a concentration-dependent manner, and, when administered systemically, entered the brain parenchyma, where it was detected by matrix-associated laser desorption ionization – time of flight mass spectrometry, and decreased brain ATP levels by 44%. In the absence of evident systemic toxicity, we observed neuropathological abnormalities in the basal ganglia and brainstem nuclei. Stereological cell counts showed significant loss of dopaminergic neurones in the substantia nigra (− 31.7%), and cholinergic (− 37.9%) and dopamine and cyclic AMP-regulated phosphoprotein (DARPP-32)-immunoreactive GABAergic neurones (− 39.3%) in the striatum, accompanied by a significant increase in the number of astrocytes (35.4%) and microglial cells (73.4%). The distribution of the lesions was similar to that in patients with atypical parkinsonism. These data are compatible with the theory that annonaceous acetogenins, such as annonacin, might be implicated in the aetiology of Guadeloupean parkinsonism and support the hypothesis that some forms of parkinsonism might be induced by environmental toxins.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The death of dopaminergic neurons that occurs spontaneously in mesencephalic cultures was prevented by depolarizing concentrations of K+ (20–50 mm). However, unlike that observed previously in other neuronal populations of the PNS or CNS, promotion of survival required concurrent blockade of either NMDA or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate receptors by the specific antagonists, MK-801 and GYKI-52466, respectively. Rescued neurons appeared to be healthy and functional because the same treatment also dramatically enhanced their capacity to accumulate dopamine. The effects on survival and uptake were rather specific to dopaminergic neurons, rapidly reversible and still observed when treatment was delayed after plating. Glutamate release increased substantially in the presence of elevated concentrations of K+, and chronic treatment with glutamate induced a loss of dopaminergic neurons that was prevented by MK-801 or GYKI-52466 suggesting that an excitotoxic process interfered with survival when only the depolarizing treatment was applied. The effects of the depolarizing stimulus in the presence of MK-801 were mimicked by BAY K-8644 and abolished by nifedipine, suggesting that neuroprotection resulted from Ca2+ influx through L-type calcium channels. Measurement of intracellular calcium revealed that MK-801 or GYKI-52466 were required to maintain Ca2+ levels within a trophic range, thus preventing K+-induced excitotoxic stress and Ca2+ overload. Altogether, our results suggest that dopaminergic neurons may require a finely tuned interplay between glutamatergic receptors and calcium channels for their development and maturation.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: To better understand the neurotrophic function of the neurotransmitter noradrenaline, we have developed a model of mesencephalic cultures in which we find low concentrations (0.3–10 µm) of noradrenaline to be remarkably effective in promoting long-term survival and function of dopaminergic neurons. This protective action reproduced the effect of caspase inhibition. It was atypical in that it occurred independently of adrenoceptor activation and was mimicked by some antioxidants, redox metal chelators and the hydroxyl radical detoxifying enzyme catalase. Interestingly, intracellular reactive oxygen species (ROS) were drastically reduced by treatment with noradrenaline, indicating that the neurotransmitter itself acted as an antioxidant. Prevention of oxidative stress was, however, independent of the glutathione antioxidant defense system. Chemical analogues of noradrenaline bearing two free hydroxyl groups in the ortho position of the aromatic ring (o-catechols), as well as o-catechol itself, mimicked the survival promoting effects of the neurotransmitter, suggesting that this diphenolic structure was critical for both neuroprotection and reduction of ROS production. Paradoxically, the autoxidation of noradrenaline and the ensuing production of quinone metabolites may be required for both effects, as the neurotransmitter was spontaneously and rapidly degraded over time in the culture medium. These results support the concept that central noradrenergic mechanisms have a neuroprotective role, perhaps in part by reducing oxidative stress.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Bax is a proapoptotic member of the Bcl-2 family of proteins. It is believed to exert its action primarily by facilitating the release of cytochrome c from the mitochondrial intermembrane space into the cytosol, leading to caspase activation and cell death. Because alterations in mitochondrial respiratory function, caspase activation and cell death with morphologic features compatible with apoptosis have been observed post mortem in the brain of patients with Parkinson's disease, we tried to clarify the potential role of Bax in this process in an immunohistochemical study on normal and Parkinson's disease post-mortem brain and primary mesencephalic cell cultures treated with MPP+. We found that Bax is expressed ubiquitously by dopaminergic (DA) neurons in post-mortem brain of normal and Parkinson's disease subjects as well as in vitro. Using an antibody to Bax inserted into the outer mitochondrial membrane as an index of Bax activation, no significant differences were observed between control and Parkinson's disease subjects, regardless of the mesencephalic subregion analysed. However, in Parkinson's disease subjects, the percentage of Bax-positive melanized SNpc neurons containing Lewy bodies, suggestive of DA neuronal suffering, was significantly higher than the overall percentage of Bax-positive neurons among melanized neurons. Furthermore, all melanized SNpc neurons in Parkinson's disease subjects with activated caspase-3 were also immunoreactive for Bax, suggesting that Bax anchored in the outer mitochondrial membrane of melanized SNpc neurons showing signs of neuronal suffering or apoptosis is increased compared with DA neurons that are apparently unaltered. Surprisingly, MPP+ treatment of tyrosine hydroxylase (TH)-positive neurons in primary mesencephalic cultures did not cause redistribution of Bax, although cytochrome c was released from the mitochondria and nuclear condensation/fragmentation was induced. Taken together, these findings suggest that in the human pathology, Bax may be a cofactor in caspase activation, but our in vitro data fail to indicate a central role for Bax in apoptotic death of DA neurons in an experimental Parkinson's disease paradigm.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: We investigated how the mitochondrial phase of ceramide-mediated cell death is initiated in nerve growth factor (NGF)-differentiated PC12 cells. We distinguished three independent effects of ceramide: free radical production; a transient increase in cytosolic free calcium; and a long-lasting increase in mitochondrial free calcium. Only the latter led to cell death, which could be prevented by buffering of mitochondrial calcium with the calcium binding protein calbindin D-28K ectopically expressed in mitochondria. We showed that mitochondrial calcium did not increase as a result of the increase in cytosolic free calcium levels. Rather, it appears to derive from the endoplasmic reticulum (ER) since dantrolene, which inhibits release of calcium from ER into cytosol through ryanodine receptors, prevented the increase in cytosolic free calcium but potentiated the increase in mitochondrial free calcium. This suggests that a transfer of calcium occurs directly, or very locally, between the two organelles. This transfer implicated activation of caspase 8 and cleavage of its substrate Bid, a previously unknown function of these cell death intermediaries. The increase in mitochondrial free calcium was also responsible for the release of cytochrome c into the cytosol, underlining the critical role it plays in ceramide-mediated cell death.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: In Parkinson's disease, nigral dopaminergic neurones degenerate, whereas post-synaptic striatal target neurones are spared. In some atypical parkinsonian syndromes, both nigral and striatal neurones degenerate. Reduced activity of complex I of the mitochondrial respiratory chain has been implicated in both conditions, but it remains unclear if this affects the whole organism or only the degenerating brain structures. We therefore investigated the differential vulnerability of various brain structures to generalized complex I inhibition. Male Lewis rats infused with rotenone, a lipophilic complex I inhibitor [2.5 mg/kg/day intraveneously (i.v.) for 28 days], were compared with vehicle-infused controls. They showed reduced locomotor activity and loss of striatal dopaminergic fibres (54%), nigral dopaminergic neurones (28.5%), striatal serotoninergic fibres (34%), striatal DARPP-32-positive projection neurones (26.5%), striatal cholinergic interneurones (22.1%), cholinergic neurones in the pedunculopontine tegmental nucleus (23.7%) and noradrenergic neurones in the locus ceruleus (26.4%). Silver impregnation revealed pronounced degeneration in basal ganglia and brain stem nuclei, whereas the hippocampus, cerebellum and cerebral cortex were less affected. These data suggest that a generalized mitochondrial failure may be implicated in atypical parkinsonian syndromes but do not support the hypothesis that a generalized complex I inhibition results in the rather selective nigral lesion observed in Parkinson's disease.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...