GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (7)
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Bax is a proapoptotic member of the Bcl-2 family of proteins. It is believed to exert its action primarily by facilitating the release of cytochrome c from the mitochondrial intermembrane space into the cytosol, leading to caspase activation and cell death. Because alterations in mitochondrial respiratory function, caspase activation and cell death with morphologic features compatible with apoptosis have been observed post mortem in the brain of patients with Parkinson's disease, we tried to clarify the potential role of Bax in this process in an immunohistochemical study on normal and Parkinson's disease post-mortem brain and primary mesencephalic cell cultures treated with MPP+. We found that Bax is expressed ubiquitously by dopaminergic (DA) neurons in post-mortem brain of normal and Parkinson's disease subjects as well as in vitro. Using an antibody to Bax inserted into the outer mitochondrial membrane as an index of Bax activation, no significant differences were observed between control and Parkinson's disease subjects, regardless of the mesencephalic subregion analysed. However, in Parkinson's disease subjects, the percentage of Bax-positive melanized SNpc neurons containing Lewy bodies, suggestive of DA neuronal suffering, was significantly higher than the overall percentage of Bax-positive neurons among melanized neurons. Furthermore, all melanized SNpc neurons in Parkinson's disease subjects with activated caspase-3 were also immunoreactive for Bax, suggesting that Bax anchored in the outer mitochondrial membrane of melanized SNpc neurons showing signs of neuronal suffering or apoptosis is increased compared with DA neurons that are apparently unaltered. Surprisingly, MPP+ treatment of tyrosine hydroxylase (TH)-positive neurons in primary mesencephalic cultures did not cause redistribution of Bax, although cytochrome c was released from the mitochondria and nuclear condensation/fragmentation was induced. Taken together, these findings suggest that in the human pathology, Bax may be a cofactor in caspase activation, but our in vitro data fail to indicate a central role for Bax in apoptotic death of DA neurons in an experimental Parkinson's disease paradigm.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: On the basis of the functional model of the basal ganglia developed in the 1980s and the neuropathological findings in Huntington's disease (HD), changes in the neuronal activity of the basal ganglia have previously been proposed to explain the abnormal movements observed in this pathology. In particular, it has been stated that the neurodegenerative process affecting the basal ganglia in the disease should provoke a hypoactivity in the internal segment of the pallidum (GPi) that could explain choreic movements observed in the disease. To test this functional hypothesis, we performed an in situ hybridization study on control and HD brains postmortem, taking cytochrome oxidase subunit I (COI) mRNAs expression as index of neuronal activity. As most of the HD patients studied were under chronic neuroleptic (NL) treatment, we also studied the brains of non-HD patients under chronic NL treatment. Our results show that in HD brain the number of neurons expressing COI mRNA tends to be lower in the striatum, GPe and GPi, suggesting a severe involvement of these structures during the neurodegenerative process. Moreover, COI mRNA level of expression was markedly reduced within neurons of the putamen and GPe. Surprisingly, COI mRNA expression was not modified in the GPi in HD brains compared with controls. This paradoxical result in the GPi may be explained by the antagonistic effect of GPe hypoactivity and the degenerative process involving neurons of GPi. Our results indicate that the functional modifications, and consequently the pathophysiology of␣abnormal movements, observed in HD basal ganglia are more complex than expected from the currently accepted model of the basal ganglia organization.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The rat parkin cDNA sequence was characterized afterscreening a rat hypothalamus cDNA library with a 32P-labeled probe containing the entire open reading frame of the human parkin cDNA. This sequence encompasses 1,576 bp and contains a single open reading frame that encodes a 465-amino acid protein. The rat parkin amino acid sequence exhibits a very striking homology to the human and mouse parkin, with 85 and 95% identity, respectively. Both the N-terminal ubiquitin and the ring-IBR (in between ring)-ring finger domains appear to be highly conserved among rat, human, and mouse parkin. An affinity-purified polyclonal antibody (ASP5p) was generated with a synthetic peptide corresponding to amino acids 295-311 of the parkin sequence, which is identical in the three species. Western blotting revealed that ASP5p recognizes a single 52-kDa band, which corresponds to the molecular mass of the parkin protein. Immunostaining with ASP5p showed that parkin is principally located in the cytoplasm of neurons that are widely distributed in the rat brain. Parkin-immunoreactive neurons abound in structures that are specifically targeted in Parkinson's disease, e.g., subtantia nigra, but are also present in unaffected structures, e.g., cerebellum. Furthermore, parkin-enriched glial cells can be detected in various nuclei of the rat brain. Thus, the role of parkin may be much more global than previously thought on the basis of genetic findings gathered in cases of early-onset parkinsonism.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Dopaminergic neurones degenerate during Parkinson's disease and cell loss is most extensive in the subpopulation of melanized neurones located in the substantia nigra pars compacta. Iron accumulation, together with a lack of up-regulation of the iron-storing protein, ferritin, has been reported and may contribute to increased oxidative stress in this region. We investigated the binding activity of iron regulatory protein-1 (IRP1) to the iron-responsive element that precludes ferritin mRNA translation, in the substantia nigra of a group of parkinsonian patients who presented a statistically significant reduction in the number of nigral melanized-neurones and an increased iron content, together with unchanged H-ferritin and L-ferritin subunit levels as compared to matched controls. The levels of ferritin mRNAs and the binding activity of IRP1 to the iron-responsive element of ferritin mRNA did not differ significantly between the two groups. Moreover, there was no detectable contribution of the iron regulatory protein-2 (IRP2) binding activity. No change in IRP1 control of ferritin mRNA translation explains the lack of up-regulation of ferritin expression in cytoplasmic extracts of SNpc that would be normally expected with cytosolic iron accumulation. The data of this study do not favor changes in transcription and post-transcriptional regulation of ferritin expression in Parkinson's disease and suggest a ‘compartmentalized’ iron accumulation.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Degeneration of dopaminergic neurones during Parkinson's disease is most extensive in the subpopulation of melanized-neurones located in the substantia nigra pars compacta. Neuromelanin is a dark pigment produced in the dopaminergic neurones of the human substantia nigra and has the ability to bind a variety of metal ions, especially iron. Post-mortem analyses of the human brain have established that oxidative stress and iron content are enhanced in association with neuronal death. As redox-active iron (free Fe2+ form) and other transition metals have the ability to generate highly reactive hydroxyl radicals by a catalytic process, we investigated the redox activity of neuromelanin (NM)-aggregates in a group of parkinsonian patients, who presented a statistically significant reduction (− 70%) in the number of melanized-neurones and an increased non-heme (Fe3+) iron content as compared with a group of matched-control subjects. The level of redox activity detected in neuromelanin-aggregates was significantly increased (+ 69%) in parkinsonian patients and was highest in patients with the most severe neuronal loss. This change was not observed in tissue in the immediate vicinity of melanized-neurones. A possible consequence of an overloading of neuromelanin with redox-active elements is an increased contribution to oxidative stress and intraneuronal damage in patients with Parkinson's disease.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The aim of the present study was to characterize the dopaminergic innervation of the pallidum in primates (humans and Cercopithecus aethiops). Firstly, in monkeys, biotin dextran amine was injected into dopaminergic areas, and the anterogradely labelled axons were reconstructed from serial sections and analysed in the pallidum. Secondly, in parkinsonian patients and MPTP-treated monkeys, the dopaminergic innervation of the pallidum was studied using tyrosine hydroxylase-positive fibre quantification. Our study revealed that dopaminergic areas A8 and A9 innervated the two pallidal segments. Individual axonal arborizations displayed a great heterogeneity. Some dopaminergic axons crossed the pallidum without branching, other axons made small terminal arborizations in a restricted region of one pallidal segment, whereas others developed dense arborizations covering extended areas in the two pallidal segments. This heterogeneous organization suggests that dopamine could directly modulate the pallidum using either a point-to-point or a diffuse projection pattern. A statistically significant loss of dopaminergic fibres in the internal (−43%) and external pallidum (−39.6%) of humans, and in the internal (−54.3%) and external pallidum (−59%) of monkeys was revealed in parkinsonian states. The consequences of this alteration are still unknown but it might participate in the triggering of motor symptoms observed in Parkinson's disease.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1546-1718
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] Translated (CAG)n repeat expansions are responsible for five autosomal dominant cerebellar ataxias (ADCA). Recently Koob et al. described an untranslated (CTG)n repeat expansion in the spinocerebellar ataxia 8 (SCA8) gene in patients with ADCA or recessive cerebellar ataxia. PCR amplifications of ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...