GLORIA

GEOMAR Library Ocean Research Information Access

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (2)
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The origin and maintenance of polymorphism in major histocompatibility complex (MHC) genes in natural populations is still unresolved. Sexual selection, frequency-dependent selection by parasites and pathogens, and heterozygote advantage have been suggested to explain the maintenance of high ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In:  Science, 301 (5638). p. 1343.
    Publication Date: 2017-12-14
    Description: In vertebrates, genes of the major histocompatibility complex (MHC), with their pronounced polymorphism, potentially represent outstanding examples for the selective advantages of genetic diversity (1). Theoretical models predicted that, within an individual, MHC alleles can be subjected to two opposing selective forces, resulting in an optimal number of genes at intermediate individual MHC diversity (2, 3). Diversifying selection increases heterozygosity and enables wider recognition of pathogens (4). This process is opposed by the need to delete T cells that react with self peptide–MHC combinations (5) from the repertoire, which has been proposed as a possible mechanism constraining expansion of MHC genes. Because too high MHC diversity might delimit T cell diversity, it might also impose limitations on the efficiency of pathogen recognition. However, empirical evidence demonstrating fitness benefits in terms of parasite resistance caused by this type of optimal MHC diversity has been lacking. Therefore, we tested whether three-spined sticklebacks (Gasterosteus aculeatus L.) carrying an intermediate level of individual MHC diversity also displayed the strongest level of resistance against parasite infection. Sticklebacks are particularly suited to test MHC optimality, because MHC class II genotypes can differ markedly in the number of MHC class IIB alleles (6). We caught fish from an outbred population and used these to breed six sibships of immunologically naïve fish (i.e., they had no previous contact to parasites). Immunogenetic diversity ranged from three to nine MHC class IIB alleles found in reverse-transcribed messenger RNA (mRNA) [see (6) for details on genotyping]. The MHC genotypes within these sibships segregated above and below the hypothesized optimal number of ∼5 MHC class IIB alleles, which had previously been estimated in an epidemiological field survey (7). In individual infection treatments, fish from all sibships were simultaneously exposed to three of the most abundant parasite species identified in the field (Fig. 1A) (8). After two rounds of infection, separated by an interval of 8 weeks, we found a significant minimal mean infection rate at an intermediate number of individual MHC class IIB variants [i.e., 5.82 expressed alleles (Fig. 1B)]. This result was also confirmed when sibships were considered separately [i.e., 4.96 alleles (Fig. 1C)] (9). The strong pattern only appeared when infection with all three parasites was accounted for simultaneously. This may not be surprising, because single alleles are expected to correlate with single diseases and multiple alleles can contribute to resistance against several infectious agents (2).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...