GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2002
    In:  Microscopy and Microanalysis Vol. 8, No. S02 ( 2002-08), p. 1044-1045
    In: Microscopy and Microanalysis, Oxford University Press (OUP), Vol. 8, No. S02 ( 2002-08), p. 1044-1045
    Type of Medium: Online Resource
    ISSN: 1431-9276 , 1435-8115
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2002
    detail.hit.zdb_id: 1481716-0
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2001
    In:  Microscopy and Microanalysis Vol. 7, No. S2 ( 2001-08), p. 10-11
    In: Microscopy and Microanalysis, Oxford University Press (OUP), Vol. 7, No. S2 ( 2001-08), p. 10-11
    Abstract: Sequence specific transcription factors are the predominant regulators of animal gene expression controlling nearly all biological processes. We are developing novel quantitative optical imaging techniques to map gene expression levels at cellular and sub-cellular resolution within an entire organism. Pregastrula Drosophila embryos have been chosen because these embryos allow high resolution 3D optical imaging since they comprise a single layer of dividing cells surrounding a yolk sac. in addition, the transcription network controlling gene expression is well characterized in early Drosophila embryos[1], and is being further dissected by a multi-laboratory collaboration, the Berkeley Collaboration in Drosophila Genomics, which encompasses this work. Embryos at different stages of development are labeled for total DNA and specific gene products using different fluorophors and imaged in 3D with confocal microscopy (Figure 1). Intensity-based segmentation of the total DNA image[2] produces a nuclear mask which defines the nuclear boundaries, their location and the number of cells within the embryo (Figure 2). Presently, dilation of the nuclear volumes into their nearest-neighbours[3] is used to estimate the boundary of the cell (Figure 3) and superposition of these images produces a morphological mask defining each cell and its nucleus.
    Type of Medium: Online Resource
    ISSN: 1431-9276 , 1435-8115
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2001
    detail.hit.zdb_id: 1481716-0
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2001
    In:  Microscopy and Microanalysis Vol. 7, No. S2 ( 2001-08), p. 578-579
    In: Microscopy and Microanalysis, Oxford University Press (OUP), Vol. 7, No. S2 ( 2001-08), p. 578-579
    Abstract: The extracellular matrix (ECM) plays a critical role in directing cell behaviour and morphogenesis by regulating gene expression and nuclear organization. Using non-malignant (S1) human mammary epithelial cells (HMECs), it was previously shown that ECM-induced morphogenesis is accompanied by the redistribution of nuclear mitotic apparatus (NuMA) protein from a diffuse pattern in proliferating cells, to a multi-focal pattern as HMECs growth arrested and completed morphogenesis . A process taking 10 to 14 days. To further investigate the link between NuMA distribution and the growth stage of HMECs, we have investigated the distribution of NuMA in non-malignant S1 cells and their malignant, T4, counter-part using a novel model-based image analysis technique. This technique, based on a multi-scale Gaussian blur analysis (Figure 1), quantifies the size of punctate features in an image. Cells were cultured in the presence and absence of a reconstituted basement membrane (rBM) and imaged in 3D using confocal microscopy, for fluorescently labeled monoclonal antibodies to NuMA (fαNuMA) and fluorescently labeled total DNA.
    Type of Medium: Online Resource
    ISSN: 1431-9276 , 1435-8115
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2001
    detail.hit.zdb_id: 1481716-0
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Microscopy and Microanalysis, Oxford University Press (OUP), Vol. 7, No. S2 ( 2001-08), p. 964-965
    Abstract: Tissue heterogeneity and three-dimensionality are generally neglected by most traditional analytical microscopy methods in Biology. These often disregard contextual information important for understanding most biological systems. in breast cancer, which is a tissue level disease, heterogeneity and three dimensionality are at the very base of cancer initiation and clonal progression. Thus, a three dimensional quantitative system that allows low resolution virtual reconstruction of the mammary gland from serial sections, followed by high resolution cell-level reconstruction and quantitative analysis of the ductal epithelium emerges as an essential tool in studying the disease. We present here a distributed microscopic imaging system which allows acquiring and registering low magnification (1 pixel = 5 μm) conventional (bright field or fluorescence) images of entire tissue sections; then it allows tracing (in 3D) the ducts of the mammary gland from adjacent sections, to create a 3D virtual reconstruction of the gland; finally it allows revisiting areas of interest for high resolution (1 pixel = 0.5 μm) imaging and automatic analysis. We illustrate the use of the system for the reconstruction of a small volume of breast tissue.
    Type of Medium: Online Resource
    ISSN: 1431-9276 , 1435-8115
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2001
    detail.hit.zdb_id: 1481716-0
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...