GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2002
    In:  Journal of Geophysical Research: Atmospheres Vol. 107, No. D24 ( 2002-12-27)
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 107, No. D24 ( 2002-12-27)
    Abstract: We present the first intercomparison between the two most comprehensive records of gas‐phase HNO 3 profiles in the Antarctic stratosphere, covering the greater part of 1993 and 1995. We compare measurements by the Stony Brook Ground‐Based Millimeter‐wave Spectrometer (GBMS) at the South Pole with Version 5 HNO 3 data from the Microwave Limb Sounder (MLS) aboard the Upper Atmospheric Research Satellite. Trajectory tracing was used to select MLS measurements in the 70°–80°S latitude band that sampled air observed by the GBMS during passage over the Pole. When temperatures were near the HNO 3 condensation range, additional screening was performed to select MLS measurements that sampled air parcels within 1.5 K of the temperature they experienced over the Pole. Quantitative comparisons are given at 7 different potential temperature levels spanning the range ∼19–30 km. Agreement between the data sets is quite good between 465 and 655 K (∼20–25 km) during a large fraction of the year. Agreement is best during winter and spring, when seasonally averaged differences are generally within 1 ppbv below ∼25 km. At higher altitudes, and during summer and fall, the agreement becomes worse, and GBMS measurements can exceed MLS values by more than 3 ppbv. We provide evidence that differences occurring in the lower stratosphere during fall are due to lack of colocation between the two data sets during a period of strong poleward gradients in HNO 3 . Remaining discrepancies between GBMS and MLS V5 HNO 3 measurements are thought to be due to instrumental or retrieval biases.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2002
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2001
    In:  Journal of Geophysical Research: Atmospheres Vol. 106, No. D19 ( 2001-10-16), p. 22979-22989
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 106, No. D19 ( 2001-10-16), p. 22979-22989
    Abstract: Satellite observations of water vapor and aerosol extinction along with temperature trajectory calculations are analyzed for the Southern Hemisphere winter of 1992 in order to determine the onset, extent, and duration of dehydration within the polar vortex. Our investigation uses measurements of water vapor from the Microwave Limb Sounder (MLS) and aerosol extinction from the Cryogenic Limb Array Etalon Spectrometer (CLAES), both on board the Upper Atmosphere Research Satellite (UARS). Evidence of persistent ice cloud formation, supported by temperature statistics obtained from air parcel trajectories, suggests that the onset of the dehydration process occurs between late June and early July. By late August‐early September water vapor depleted areas within the vortex no longer coincide with high aerosol extinctions, indicating that severe dehydration has occurred with the irreversible removal of water vapor over vast areas. Areas with depleted levels of water vapor, below the prewinter values, persist well into November. Evidence for dehydration is found on potential temperature surfaces from 420 K (the lower limit of the MLS measurements) to 520 K (approximately 16 to 22 km). The horizontal extent of the dehydrated area at 465 K encompasses up to 35% of the total vortex area equatorward of 80°S. A comparison of CLAES aerosol extinction measurements and model calculations of aerosol extinction suggests an average ice particle number concentration and size of 10 −2 –10 −3 cm −3 and 10–30 μm, respectively. We show that the difference between the timing of the onset of dehydration found here and that in a recent analysis of Polar Ozone and Aerosol Measurement III (POAM) observations can be explained by the latitudinal sampling pattern of the POAM instrument.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2001
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 109, No. D6 ( 2004-03-27), p. n/a-n/a
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2004
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2000
    In:  Journal of Geophysical Research: Atmospheres Vol. 105, No. D6 ( 2000-03-27), p. 7111-7131
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 105, No. D6 ( 2000-03-27), p. 7111-7131
    Abstract: The coupling of temperature, aerosol area density, and chlorine activation is studied by comparing values from a three‐dimensional chemical transport model with observed temperature, aerosol area density, and ClO data in the Arctic for the time period December 1, 1995, to January 9, 1996. The three‐dimensional model uses United Kingdom Meteorological Office (UKMO) winds and temperatures, run on pressure surfaces between 316 and 0.31 hPa, and the model results are examined at 100, 68, 46, 31, and 21 hPa. Radiosonde values are compared to individual UKMO temperature values to assess the impact of model temperature errors upon heterogeneous chemistry reaction probabilities. Polar Ozone and Aerosol Measurement (POAM II) aerosol extinction values are transformed into area density values and compared to model daily averaged time trends. The model is run with gas phase chemistry only, gas phase plus sulfate aerosol chemistry, and the case where gas phase, sulfate aerosol, and polar stratospheric cloud reactions are active. Results from these calculations are used to examine the sensitivity of chlorine activation to temperature biases, area density uncertainties, and the effects of the reaction paths OH + ClO → HCl + O 2 (4% yield) and HO 2 + ClO → HCl + O 3 (4% yield). Sulfate aerosol is demonstrated to be very effective in activating chlorine in the Arctic polar vortex. Time trends of five‐day averages of model and Upper Atmosphere Research Satellite (UARS) Microwave Limb Sounder (MLS) version 4 ClO over extended regions inside and outside the vortex at 21 and 46 hPa agree within the experimental error.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2000
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...