GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Annals of Glaciology, International Glaciological Society, Vol. 39 ( 2004), p. 366-372
    Abstract: Airborne radio-echo sounding investigations in the upper reaches of Bailey Ice Stream and Slessor Glacier, Coats Land, East Antarctica, have shown that enhanced-flow tributaries are associated with well-defined areas of relatively thicker ice, and are separated from each other by areas of relatively thinner ice. A numerical modelling study has revealed that while internal ice deformation might account for all the observed flow in inter-tributary areas and the majority in the Slessor tributaries, a significant proportion of the flow of Bailey tributary is attributable to basal motion. Further, investigations of depth-corrected basal reflection power indicate that the bed underlying both Bailey and Slessor enhanced-flow tributaries is significantly smoother than in the slower-moving inter-tributary areas. It is thus proposed that enhanced motion within Bailey tributary (and also perhaps Slessor) may be facilitated by a reduction in basal roughness, caused by the accumulation of water and/or sediments within subglacial valleys, or by the erosion and smoothing of bed obstacles.
    Type of Medium: Online Resource
    ISSN: 0260-3055 , 1727-5644
    Language: English
    Publisher: International Glaciological Society
    Publication Date: 2004
    detail.hit.zdb_id: 2122400-6
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2001
    In:  Science Vol. 291, No. 5505 ( 2001-02-02), p. 862-864
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 291, No. 5505 ( 2001-02-02), p. 862-864
    Abstract: The Pine Island Glacier (PIG) transports 69 cubic kilometers of ice each year from ∼10% of the West Antarctic Ice Sheet (WAIS). It is possible that a retreat of the PIG may accelerate ice discharge from the WAIS interior. Satellite altimetry and interferometry show that the grounded PIG thinned by up to 1.6 meters per year between 1992 and 1999, affecting 150 kilometers of the inland glacier. The thinning cannot be explained by short-term variability in accumulation and must result from glacier dynamics.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2001
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...