GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (1)
  • Engineering  (1)
Material
Publisher
Language
Years
  • 2000-2004  (1)
Year
Subjects(RVK)
  • Engineering  (1)
RVK
  • 1
    In: Materials Testing, Walter de Gruyter GmbH, Vol. 46, No. 6 ( 2004-06-01), p. 314-319
    Abstract: For the first time metal matrix composites have been investigated by 3D computed tomography combined with enhanced interface contrast due to X-ray refraction. The related techniques of refraction topography and refraction computed tomography have been developed and applied during the last decade to meet the actual demand for improved non-destructive characterization of high performance composites, ceramics and other low-density materials and components. X-ray refraction is an optical effect that can be observed at small scattering angles of a few minutes of arc as the refractive index n of X-rays is nearly unity ( n = 1 − 10 −6 ). Due to the short X-ray wavelength, the technique determines the amount of inner surfaces and interfaces of nanometer dimensions. The technique can solve many problems in understanding micro and sub microstructures in materials science. Applying 3D refraction computed tomography, some questions could be clarified for a better understanding of fatigue failure mechanisms under cyclic loading conditions.
    Type of Medium: Online Resource
    ISSN: 2195-8572 , 0025-5300
    RVK:
    Language: English
    Publisher: Walter de Gruyter GmbH
    Publication Date: 2004
    detail.hit.zdb_id: 2280363-4
    detail.hit.zdb_id: 206395-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...