GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • OceanRep  (1)
  • 2000-2004  (1)
Document type
Publisher
Years
Year
  • 1
    Publication Date: 2017-07-10
    Description: We compared the effect of CO2 concentration ([CO2], ranging from ∼5 to ∼34 μmol l−1) at four different photon flux densities (PFD=15, 30, 80 and 150 μmol m−2 s−1) and two light/dark (L/D) cycles (16/8 and 24/0 h) on the coccolithophore Emiliania huxleyi. With increasing [CO2], a decrease in the particulate inorganic carbon to particulate organic carbon (PIC/POC) ratio was observed at all light intensities and L/D cycles tested. The individual response in cellular PIC and POC to [CO2] depended strongly on the PFD. POC production increased with rising [CO2], irrespective of the light intensity, and PIC production decreased with increasing [CO2] at a PFD of 150 μmol m−2 s−1, whereas below this light level it was unaffected by [CO2]. Cell growth rate decreased with decreasing PFD, but was largely independent of ambient [CO2]. The diurnal variation in PIC and POC content, monitored over a 38-h period (16/8 h L/D, PFD=150 μmol m−2 s−1), exceeded the difference in carbon content between cells grown at high (∼29 μmol l−1) and low (∼4 μmol l−1) [CO2]. However, consistent with the results described above, cellular POC content was higher and PIC content lower at high [CO2], compared to the values at low [CO2], and the offset was observed throughout the day. It is suggested that the observed sensitivity of POC production for ambient [CO2] may be of importance in regulating species-specific primary production and species composition
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...