GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 426 (2000), S. 185-192 
    ISSN: 1573-5117
    Keywords: nutrient competition ; periphyton ; nitrogen ; silicate ; eutrophication ; benthic microalgae ; hard substrates
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In order to understand the effect of changing nutrient conditions on benthic microalgae on hard substrates, in-situ experiments with artificial substrates were conducted in Kiel Fjord, Western Baltic Sea. As an extension of previous investigations, we used artificial substrates without silicate and thus were able to supply nutrient media with different Si:N ratios to porous substrates, from where they trickled out continuously. The biofilm developing on these substrates showed a significant increase in biovolume due to N + P enrichment, while Si alone had only minor effects. The stoichiometric composition of the biomass indicated nitrogen limitation during most of the year. The C:N ratios were lowered by the N + P addition. The algae were dominated by diatoms in most cases, but rhodophytes and chlorophytes also became important. The nutrient treatment affected the taxonomic composition mostly at the species level. The significance of the results with regard to coastal eutrophication is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-10-09
    Description: For unicellular organisms, a lack of effects of local species richness on ecosystem function has been proposed due to their locally high species richness and their ubiquitous distribution. High dispersal ability and high individual numbers may enable unicellular taxa to occur everywhere. Using our own and published data sets on uni- and multicellular organisms, we conducted thorough statistical analyses to test whether (1) unicellular taxa show higher relative local species richness compared to multicellular taxa, (2) unicellular taxa show lower slopes of the species:area relationships and species:individuals relationships, and (3) the species composition of unicellular taxa is less influenced by geographic distance compared to multicellular taxa. We found higher local species richness compared to the global species pool for unicellular organisms than for metazoan taxa. The difference was significant if global species richness was conservatively estimated but not if extrapolated, and therefore higher richness estimates were used. Both microalgae and protozoans showed lower slopes between species richness and sample size (area or individuals) compared to macrozoobenthos, also indicating higher local species richness for unicellular taxa. The similarity of species composition of both benthic diatoms and ciliates decreased with increasing geographic distance. This indicated restricted dispersal ability of protists and the absence of ubiquity. However, a steeper slope between similarity and distance was found for polychaetes and corals, suggesting a stronger effect of distance on the dispersal of metazoans compared to unicellular taxa. In conclusion, we found partly different species richness patterns among uni- and multicellular eukaryotes, but no strict ubiquity of unicellular taxa. Therefore, the effect of local unicellular species richness on ecosystem function has to be reanalyzed. Macroecological patterns suggested for multicellular organisms may differ in unicellular communities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Springer
    In:  Oecologia, 132 . pp. 479-491.
    Publication Date: 2017-10-09
    Description: The impact of regional factors (such as speciation or dispersal) on the species richness in local communities (SL) has received increasing attention. A prominent method to infer the impact of regional factors is the comparison of species richness in local assemblages (SL) with the total number of species in the region (SR). Linear relations between SR and SL have been interpreted as an indication of strong regional influence and weak influence of interactions within local communities. We propose that two aspects bias the outcome of such comparisons: (1) the spatial scale of local and regional sampling, and (2) the body size of the organisms. The impact of the local area reflects the scales of ecological interactions, whereas the ratio between local and regional area reflects the inherent moment of autocorrelation. A proposed impact of body size on the relation is based on the high dispersal and high abundance of small organisms. We predict strongest linearity between SR and SL for large organisms, for large local areas (less important ecological interactions) and for sampling designs where the local habitat area covers a high proportion of the regional area (more important autocorrelation). We conducted a meta-analysis on 63 relations obtained from the literature. As predicted, the linearity of the relationship between SL and SR increased with the proportion of local to regional sampling area. In contrast, neither the body size of the organisms nor the local area itself was significantly related to the relation between SL and SR. This indicated that ecological interactions played a minor role in the shape of local to regional richness plots, which instead was mainly influenced by the sampling design. We found that the studies published so far were highly biased towards larger organisms and towards high similarity between the local and regional area. The proposed prevalence of linear relationships may thus be an artefact and plots of SL to SR are not a suitable tool with which to infer the strength of local interactions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Springer
    In:  Hydrobiologia, 426 (1). pp. 183-190.
    Publication Date: 2018-06-29
    Description: In order to understand the effect of changing nutrient conditions on benthic microalgae on hard substrates, in-situ experiments with artificial substrates were conducted in Kiel Fjord, Western Baltic Sea. As an extension of previous investigations, we used artificial substrates without silicate and thus were able to supply nutrient media with different Si:N ratios to porous substrates, from where they trickled out continuously. The biofilm developing on these substrates showed a significant increase in biovolume due to N + P enrichment, while Si alone had only minor effects. The stoichiometric composition of the biomass indicated nitrogen limitation during most of the year. The C:N ratios were lowered by the N + P addition. The algae were dominated by diatoms in most cases, but rhodophytes and chlorophytes also became important. The nutrient treatment affected the taxonomic composition mostly at the species level. The significance of the results with regard to coastal eutrophication is discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...