GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (2)
  • 2000-2004  (2)
  • 1
    facet.materialart.
    Unknown
    Elsevier
    In:  Aquatic Botany, 67 (3). pp. 221-236.
    Publication Date: 2017-12-12
    Description: The factors regulating species diversity have received increasing attention in the face of the global biodiversity loss, but are not well understood for unicellular organisms. We conducted in situ experiments in Kiel Fjord in order to analyze the response of microalgal diversity to colonization time and to artificial eutrophication. Diversity decreased throughout colonization time (maximum: 12 weeks), whereas species richness initially increased to about 25 species before it leveled off. The proposed unimodal time course of diversity during succession could not be detected for diversity or species richness. The rapid decrease of evenness indicated a greater importance of algal growth on the substrata compared to the arrival of new species. Artificial eutrophication led to an decrease of diversity, which could be correlated to the supply concentrations of the limiting nutrient: P in spring, N in summer and Si in the presence of high concentrations of N and P. The decrease was due to an increased dominance of few species (i.e. reduced evenness), whereas species richness was not or positively correlated to nutrient supply. Species richness was negatively correlated to evenness and diversity measures. Thus, species diversity indices are useful response variable to measure environmental effects on local periphyton communities
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-06-12
    Description: Field experiments were conducted to investigate the effects of grazing and nutrient supply on sediment microflora in a freshwater habitat (Lake Erken, Sweden) and at the brackish Baltic Sea coast (Väddö, Sweden). The two sites were of similar productivity, but had contrasting herbivore composition. In a full-factorial experiment design, closed cages excluded macrozoobenthos (〉1 mm) from sediment patches, whereas open cages allowed grazer access. The cage design applied here proved to successfully prevent in- and epifauna to access the sediment in closed cages. In half of the treatments, nutrients were added to the water-column by a slow-release fertilizer. The experiments were seasonally replicated four times at Väddö and two times in Lake Erken. After 4–5 weeks, sediment cores were sampled and analyzed for chlorophyll, carbon, nitrogen and phosphorus. The benthic microalgae showed strong seasonal variation in biomass and internal nutrient content. At Väddö, neither grazing nor nutrients affected the algal biomass significantly, but significant grazer effects were detected on C:N:P ratios. In Lake Erken, grazer presence reduced algal biomass by ca. 50%, whereas nutrients were without effect on biomass or on nutrient content. Compared to results from hard substrata at the same sites, sediment microflora was less affected by nutrients and grazing. This may be due to the harsh physico-chemical environment on sediments, to low grazer density at the coastal site and to low availability of water column nutrients to sediment microalgae. In our experiments, sand-dwelling microphytobenthic communities represented a highly dynamic assemblage, which, however, is less structured by biotic interactions than epilithic periphyton
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...