GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (6)
  • Leitstelle Deutsche Forschungsschiffe
  • 2000-2004  (6)
Document type
Publisher
Years
Year
  • 1
    Publication Date: 2016-11-15
    Description: Bottom-simulating reflections (BSRs) are probably the most commonly used indicators for gas hydrates in marine sediments. It is now widely accepted that BSRs are primarily caused by free gas beneath gas-hydrate-bearing sediments. However, our insight into BSR formation to date is mostly limited to theoretical studies. Two endmember processes have been suggested to supply free gas for BSR formation: (i) dissociation of gas hydrates and (ii) migration of methane from below. During a recent campaign of the German Research Vessel Sonne off the shore of Peru, we detected BSRs at locations undergoing both tectonic subsidence and non-sedimentation or seafloor erosion. Tectonic subsidence (and additionally perhaps seafloor erosion) causes the base of gas hydrate stability to migrate downward with respect to gas-hydrate-bearing sediments. This process rules out dissociation of gas hydrates as a source of free gas for BSRs at these locations. Instead, free gas at BSRs is predicted to be absorbed into the gas hydrate stability zone. BSRs appear to be confined to locations where the subsurface structure suggests focusing of fluid flow. We investigated the seafloor at one of these locations with a TV sled and observed fields of rounded boulders and slab-like rocks, which we interpreted as authigenic carbonates. Authigenic carbonates are precipitations typically found at cold vents with methane expulsion. We retrieved a small carbonate-cemented sediment sample from the seafloor above a BSR about 20 km away. This supported our interpretation that the observed slabs and boulders were carbonates. All these observations suggest that BSRs in Lima Basin are maintained predominantly by gas that is supplied from below, demonstrating that this endmember process for BSR formation exists in nature. Results from Ocean Drilling Program Leg 112 showed that methane for gas hydrate formation on the Peru lower slope and the methane in hydrocarbon gases on the upper slope is mostly of biogenic origin. The δ13C composition of the recovered carbonate cement was consistent with biologic methane production below the seafloor (although possibly above the BSR). We speculate that the gas for BSR formation in Lima Basin also is mainly biogenic methane. This would suggest the biologic productivity beneath the gas hydrate zone in Lima Basin to be relatively high in order to supply enough methane to maintain BSRs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-06-26
    Description: Two cores recovered from the Discovery Basin and one reference core from a location outside the Basin were investigated in detail in order to decipher the influence of hypersaline brines on sediment geochemistry. The cores contain a tephra layer (presumable Y-5) and carbonate microfossils which permit a tentative chrono- and lithostratigraphic correlation. A layer containing up to 60 wt% biogenic opal and 6.6 wt% organic carbon was identified in one basin core, which probably represents the best preserved example of eastern Mediterranean sapropel S-1. The basin is filled with a concentrated solution of MgCl2 which is enriched in dissolved sulfate and has the highest salinity ever encountered in the marine environment. Pore water profiles demonstrate that this brine dissolves sedimentary calcite to form secondary carbonate- and sulfate-bearing minerals. Of these, dolomite, magnesite and gypsum were identified by X-ray diffractometry; thermodynamic calculations show that these phases form in equilibrium with the anomalous brine composition.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-10-28
    Description: We discovered and investigated several cold-seep sites in four depth zones of the Sea of Okhotsk off Northeast Sakhalin: outer shelf (160–250 m), upper slope (250–450 m), intermediate slope (450–800 m), and Derugin Basin (1450–1600 m). Active seepage of free methane or methane-rich fluids was detected in each zone. However, seabed photography and sampling revealed that the number of chemoautotrophic species decreases dramatically with decreasing water depth. At greatest depths in the Derugin Basin, the seeps were inhabited by bacterial mats and bivalves of the families Vesicomyidae (Calyptogena aff. pacifica, C. rectimargo, Archivesica sp.), Solemyidae (Acharax sp.) and Thyasiridae (Conchocele bisecta). In addition, pogonophoran tubeworms of the family Sclerolinidae were found in barite edifices. At the shallowest sites, on the shelf at 160 m, the seeps lack chemoautotrophic macrofauna; their locations were indicated only by the patchy occurrence of bacterial mats. Typical seep-endemic metazoans with chemosynthetic symbionts were confined to seep sites at depths below 370 m. A comparative analysis of the structure of seep and background communities suggests that differences in predation pressure may be an important determinant of this pattern. The abundance of predators such as carnivorous brachyurans and asteroids, which can invade seeps from adjacent habitats and efficiently prey on sessile seep bivalves, decreased very pronouncedly with depth. We conclude from the obvious correlation with the conspicuous pattern in the distribution of seep assemblages that, on the shelf and at the upper slope, predator pressure may be high enough to effectively impede any successful settlement of viable populations of seep-endemic metazoans. However, there was also evidence that other depth-related factors, such as bottom-water current, sedimentary regimes, oxygen concentrations and the supply of suitable settling substrates, may additionally regulate the distribution of seep fauna in the area. As a consequence of the pronounced pattern in the distribution of seep communities, their ecological significance as food sources of surrounding background fauna increased with water depth. Isotopic analyses suggest that in the Derugin Basin seep colonists feed on chemoautotrophic seep organisms, either directly or by preying on metazoans with chemosynthetic symbionts. In contrast, seep organisms apparently do not contribute to the nutrition of the adjacent background fauna on the shelf and at the slope. In this area, elevated epifaunal abundances at seep sites were caused primarily by the availability of suitable settling substrates rather than by an enrichment of food supply.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-06-27
    Description: Cold seeps in the Aleutian deep-sea trench support prolific benthic communities and generate carbonate precipitates which are dependent on carbon dioxide delivered from anaerobic methane oxidation. This process is active in the anaerobic sediments at the sulfate reduction-methane production boundary and is probably performed by archaea working in syntrophic co-operation with sulfate-reducing bacteria. Diagnostic lipid biomarkers of archaeal origin include irregular isoprenoids such as 2,6,11,15-tetramethylhexadecane (crocetane) and 2,6,10,15,19-pentamethylicosane (PMI) as well as the glycerol ether lipid archaeol (2,3-di-O-phytanyl-sn-glycerol). These biomarkers are prominent lipid constituents in the anaerobic sediments as well as in the carbonate precipitates. Carbon isotopic compositions of the biomarkers are strongly depleted in 13C with values of δ13C as low as −130.3‰ PDB. The process of anaerobic methane oxidation is also reflected in the carbon isotope composition of organic matter with δ13C-values of −39.2 and −41.8‰ and of the carbonate precipitates with values of −45.4 and −48.7‰. This suggests that methane-oxidizing archaea have accumulated within the microbial community, which is active at the cold seep sites. The dominance of crocetane in sediments at one station indicates that, probably due to decreased methane venting, archaea might no longer be growing, whereas high amounts of crocetenes found at other more active stations may indicate recent fluid venting and active archaea. Comparison with other biomarker studies suggests that various archaeal assemblages might be involved in the anaerobic consumption of methane. The assemblages are apparently dependent on specific conditions found at each cold seep environment. Selective conditions probably include water depth, temperature, degree of anoxia, and supply of free methane.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: An area of massive barite precipitations was studied at a tectonic horst in 1500 m water depth in the Derugin Basin, Sea of Okhotsk. Seafloor observations and dredge samples showed irregular, block- to column-shaped barite build-ups up to 10 m high which were scattered over the seafloor along an observation track 3.5 km long. High methane concentrations in the water column show that methane expulsion and probably carbonate precipitation is a recently active process. Small fields of chemoautotrophic clams (Calyptogena sp., Acharax sp.) at the seafloor provide additional evidence for active fluid venting. The white to yellow barites show a very porous and often layered internal fabric, and are typically covered by dark-brown Mn-rich sediment; electron microprobe spectroscopy measurements of barite sub-samples show a Ba substitution of up to 10.5 mol% of Sr. Rare idiomorphic pyrite crystals (∼1%) in the barite fabric imply the presence of H2S. This was confirmed by clusters of living chemoautotrophic tube worms (1 mm in diameter) found in pores and channels within the barite. Microscopic examination showed that micritic aragonite and Mg-calcite aggregates or crusts are common authigenic precipitations within the barite fabric. Equivalent micritic carbonates and barite carbonate cemented worm tubes were recovered from sediment cores taken in the vicinity of the barite build-up area. Negative δ13C values of these carbonates (〉−43.5‰ PDB) indicate methane as major carbon source; δ18O values between 4.04 and 5.88‰ PDB correspond to formation temperatures, which are certainly below 5°C. One core also contained shells of Calyptogena sp. at different core depths with 14C-ages ranging from 20 680 to 〉49 080 yr. Pore water analyses revealed that fluids also contain high amounts of Ba; they also show decreasing SO42- concentrations and a parallel increase of H2S with depth. Additionally, S and O isotope data of barite sulfate (δ34S: 21.0–38.6‰ CDT; δ18O: 9.0–17.6‰ SMOW) strongly point to biological sulfate reduction processes. The isotope ranges of both S and O can be exclusively explained as the result of a mixture of residual sulfate after a biological sulfate reduction and isotopic fractionation with ‘normal’ seawater sulfate. While massive barite deposits are commonly assumed to be of hydrothermal origin, the assemblage of cheomautotrophic clams, methane-derived carbonates, and non-thermally equilibrated barite sulfate strongly implies that these barites have formed at ambient bottom water temperatures and form the features of a Giant Cold Seep setting that has been active for at least 49 000 yr.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-07-28
    Description: Mg-calcite-cemented bioturbation traces, glendonite aggregates of idiomorphic, bi-pyramidal crystals and porous, amber-colored carbonate concretions were recovered from a methane-dominated cold vent area in 380 m water depth at the northern Sakhalin Slope, Sea of Okhotsk. Bioturbation traces consist of Mg-calcite cemented sediment with δ13C values between −37 and −46‰ PeeDee Belemnite (PDB), which implicate methane as the carbon source. Glendonite, a calcite pseudomorphosis after ikaite (CaCO3·6H2O), and amber-colored concretions are both composed of varying amounts of calcite and Mg-calcite with δ13C values between −19 and −34‰ PDB. Isotope analyses of an ikaite crystal recovered in the vicinity reveals δ13C values between −20‰ and −22‰ PDB indicating organic matter as the carbon source. Microscopic investigations of glendonites and amber-colored concretions show a porous fabric of a primary calcite phase that is overgrown by a secondary Mg-calcite cement. As ikaite pseudomorphs to porous calcite and as carbon isotope values are the same for the ikaite and the high end member values of glendonite samples, the primary calcite phase is suggested to be a former ikaite phase. Because they share the equal color, fabric, mineral and isotopic composition with glendonites, the amber-colored concretions are also suggested to represent calcite that transformed from ikaite. A mixture of pseudomorph calcite (δ13C −20‰ PDB), which originally formed as ikaite from degraded organic matter, and Mg-calcite (δ13C −43‰ PDB), which crystallized due to the anaerobic oxidation of methane, can explain the varying carbon isotope data of the glendonites and the amber-colored concretions. The growth of ikaite, the transformation of ikaite to calcite, and the crystallization of Mg-calcite indicate changing geochemical conditions within a cold vent environment at different times. Ideal conditions for the ikaite formation are given during the establishment of a cold vent site when upward-migrating, methane-rich fluids enhance the anaerobe decomposition of organic matter, which again increases the phosphate and alkalinity concentrations near the sediment surface. Lower rates of organic matter decomposition during on-going venting decrease these high phosphate but also sulphate concentrations and allows other carbonate phases as Mg-calcite to form. This additional carbonate precipitation and the ikaite formation itself lower the high alkalinity and destabilize ikaite, which pseudomorphs to porous calcite. Triggered by the further upward-shifting SO4/H2S boundary and increasing methane oxidation rates, the typical cold vent methane-derived carbonate genesis takes place, which cements the sediment pore space and induces the secondary Mg-calcite crystallization within the glendonite fabric. Taking this scenario into account, ikaite formation should be a common process in the beginning of methane-dominated vent activity at cold bottom water temperatures; glendonite pseudomorphs can be assumed to represent a typical manifestation at fossil and recent cold vents at high latitudes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...