GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (5)
  • Gustav Fischer Verlag
  • 2000-2004  (5)
Document type
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    Elsevier
    In:  Journal of Marine Systems, 30 . pp. 241-261.
    Publication Date: 2017-07-12
    Description: Taxon-specific microzooplankton dynamics were studied along a transect through the North Atlantic Drift from 70°N 04°E to 40°N 20°W during July 1997 using serial dilution and nutrient-enrichment experiments. Nutrient concentrations and microzooplankton composition indicated postbloom conditions at 40°N, 47°N, and 50°N, a transitional system at 54°N, and bloom conditions at 62°N and 70°N. The ratio of microzooplankton to phytoplankton biomass was inversely related to nitrate and phosphate concentrations. Potential grazing thresholds were observed in four of nine experiments at 40–66% of the initial phytoplankton concentration. Grazing losses were determined for six pigment-specific classes of phytoplankton. Selective grazing losses of phytoplankton taxa ranged from 73% to 248% of the nonselective grazing losses predicted according to their biomass contributions. The grazing selectivity varied considerably between communities, with the microherbivores showing positive selection for cyanobacteria and dinoflagellates and predominantly avoidance of chlorophyta and bacillariophyceae. Microzooplankton did not show a preference for the dominant phytoplankton taxa, but grazed preferentially on fast-growing phytoplankton with minor contributions (〈15%) to the phytoplankton biomass. However, bacillariophyceae were the major contributors to phytoplankton biomass and accounted for major fractions of the total losses through microzooplankton grazing. Microzooplankton consumed the equivalent of 0.12–5.5 times their own biomass daily on a carbon basis, amounting to 65–197% of gross phytoplankton production. With the conservative assumption that 20% of the consumed phytoplankton was converted to microzooplankton biomass, the latter was estimated to contribute 27–381% to the net production of the entire microzooplankton community. We therefore conclude that the taxonomic structure and the net production of the microzooplankton communities were significantly affected by the intensity and selectivity of herbivorous microzooplankton grazing.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-08-05
    Description: We present barium data for sediment traps deployed in a northeast Atlantic margin environment (Bay of Biscay). Fluxes of excess barium were measured with the objective of calculating carbon export production rates from the surface mixed layer and thus contribute to the understanding of organic carbon transport in a margin environment. Therefore, it was necessary to properly understand the different processes that affected the barium fluxes in this margin environment. Seasonal variability of POC/Ba flux ratios and decrease of barium solubilisation in the trap cups with increasing depth in the water column probably indicate that the efficiency of barite formation in the organic micro-environment varies with season and that the process is relatively slow and not yet completed in the upper 600 m of water column. Thus barite presence in biogenic aggregates will significantly depend on water column transit time of these aggregates. Furthermore, it was observed that significant lateral input of excess-Ba can occur, probably associated with residual currents leaving the margin. This advected excess-Ba affected especially the recorded fluxes in the deeper traps (〉1000 m) of the outer slope region. We have attempted to correct for this advected excess-Ba component, using Th (reported by others for the same samples) as an indicator of enhanced lateral flux and assigning a characteristic Ba/Th ratio to advected material. Using transfer functions relating excess-Ba flux with export production characteristic of margin areas, observed Ba fluxes indicate an export production between 7 and 18 g C m−2 yr−1. Such values are 3–7 times lower than estimates based on N-nutrient uptake and nutrient mass balances, but larger and more realistic than is obtained when a transfer function characteristic of open ocean systems is applied. The discrepancy between export production estimates based on excess-Ba fluxes and nutrient uptake could be resolved if part of the carbon is exported as dissolved organic matter. Results suggest that margin systems function differently from open ocean systems, and therefore Ba-proxy rationales developed for open ocean sites might not be applicable in margin areas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part II: Topical Studies in Oceanography, 48 (14-15) . pp. 3083-3106.
    Publication Date: 2020-08-05
    Description: A synopsis of results from two sediment trap moorings deployed at the mid- and outer slope (water depths 1450 and 3660 m, respectively) of the Goban Spur (N.E. Atlantic Margin) is presented. Fluxes increase with trap deployment depth; below 1000 m resuspended and advected material contributes increasingly to bulk flux. Fluxes of dry weight, POC and diatoms in the traps 400 m above bottom (mab) are smaller than those recorded at the sediment surface due to lateral fluxes in the benthic nepheloid layer. These near-bottom fluxes are larger at shallower water depths. 231Pa/230Th ratios in sedimenting material suggest that boundary scavenging is not significant at the Goban Spur. Fluxes of 210Pb in the intermediate and deep traps are comparable to the 210Pb supply rate at this site. At the outer slope, sediment 210Pb fluxes are similar to those measured in the traps 400 mab; at the mid-slope they are a factor of 2 higher, once again indicating large near-bottom lateral particle input. Based on POC-normalised biomarkers in sedimenting material, we followed changes in the quality of sedimenting material with differing trap depth and on seasonal and event-related time scales. In spring fresh, diatom-dominated sedimentation occurs, with progressive degradation of POC with time (to winter) and depth (from 600 to 3220 m). Deeper traps are distinguished on the basis of opal and aluminium fluxes that are dominant in lateral input. A storm event during late September 1993 was clearly reflected in the δ15N isotope ratio of sedimenting material, with a time lag of 2–3 weeks. Diatom and opal fluxes were elevated in this storm-related signal, and its biomarker composition in the 600-m trap was similar to that during spring. An estimate made of upward nitrate flux (new production) at the shelf break and at the outer slope indicated a 2-fold higher new (export) production at the shelf break. Particulate organic carbon export from the shelf break to below the depth of maximal seasonal mixing ranges between 3 and 9% of primary production.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-08-05
    Description: As part of the OMEX I project, nutrient determinations were made on 17 cruises in the region of the Goban Spur and La Chapelle Bank between 46 and 51°N, in all seasons of the year, between 1993–1995. Over this period no change was detectable in the structure of the water masses below the deep winter mixed layer. The N : P (dissolved nitrate-to-phosphate) ratio changed from 16 at 100-m depth to less than 15 at 3300-m depth. At intermediate depths nutrient and oxygen data indicate the presence of Mediterranean Outflow water overlying Labrador Sea Water at its most eastern extension. Estimated maximum levels of production in the spring bloom are the total N-limited new primary production equivalent between 24 and 41 gC m−2, the equivalent maximum diatom production is 11 gC m−2. Measurements during the spring bloom suggest a conversion factor of 1 μM nitrate to 1 μg l−1 chlorophyll, at the shelf break, which is consistent with other recent measurements in European shelf seawaters. Sediment trap data suggest that 80% (5.4 g m−2) of the opal produced in the spring bloom dissolved before reaching the sediment trap at 600 m. A comparison of the winter and summer profiles for dissolved silicon suggests a similar dissolution of 9±3 g opal m−2 above 300-m depth. Measurements of dissolved organic carbon (DOC) in September 1994 show an enrichment of 7 μM-C above the seasonal thermocline relative to the winter values (52±4 μM). In winter dissolved organic nitrogen represents 40% of the pool of total dissolved nitrogen. There is no consistent evidence of an increase in the concentration of DON during summer. Measurements of nitrate in surface waters in January 1994 show that concentrations off-shelf vary with the temperature of the water and are related to the depth of winter mixing. Mixing in surface waters is discontinuous at the shelf break, demonstrating the degree to which exchange across the shelf break is limited even in winter. OMEX winter measurements of nitrate concentrations can be used to estimate the flow of water across the shelf break that would be required to maintain the nitrogen balance in the North Sea at a steady state. The estimate is 0.6 Sv (1 Sv=106 m3 s−1), which is similar to an earlier estimate of a total flow of 1.7 Sv based on salt budgets (cf. Huthnance, Deutsche Hydrographische Zeitschrift, 49 (1997) 153).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-08-03
    Description: Barium (Ba), aluminium (Al), and zirconium (Zr) were measured in sediment trap material deployed at two margin settings of the NE Atlantic: the Bay of Biscaye at Goban Spur and the NW Iberian Margin. The Particulate Organic Carbon (POC)/Ba ratios of the trapped material in both margin environments are clearly higher compared to the open ocean. Although lateral advection of POC may partly explain these higher POC/Ba ratios for margin systems, it is clear that the yield of authigenic particulate Ba during organic matter degradation in the water column is lower in margin environments. In order to assess export production in margin settings we optimised transfer functions based on trapped Ba fluxes that were originally elaborated for open ocean settings. Calculations of export production based on trapped Ba flux and POC/Ba ratio were compared with calculations based on trapped POC flux only. Export production based on Ba flux show greater internal consistency amongst traps along the same mooring, suggesting that this approach has advantages over the one based on POC flux only. Estimated export productions are of the same order of magnitude as estimates of new production, but systematically fall short of the latter. This systematic discrepancy needs further investigation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...