GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • Springer  (2)
  • Blackwell Publishing Ltd  (1)
  • Elsevier
  • 2000-2004  (3)
Document type
  • Articles  (3)
Publisher
Year
Topic
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Addiction biology 8 (2003), S. 0 
    ISSN: 1369-1600
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Amino acids (AAs) in the extracellular portion of the transmembrane domain of several inhibitory ligand-gated ion channels participate in an alcohol binding site. To extend these studies to neuronal nicotinic acetylcholine receptors (nAChRs), we focused on an AA (L262) located in the same region of the second transmembrane domain of the α2 subunit of neuronal nAChRs. Single-point mutation of α2L262 was carried out, the resulting α2 subunits co-expressed with wild-type β4 subunits in Xenopus laevis oocytes, and studied using two-electrode voltage clamp. Ethanol enhancement of ACh responses was diminished [α2(L262F)β4] or abolished [α2(L262G)β4, α2(L262S)β4 and α2(L262A)β4]. Mutation of the homologous AA in β4 [β4(L258A)] did not modify the ethanol modulation and the mutation in α2 was dominant, because ethanol did not enhance ACh responses in α2(L262A)β4(L258A) nAChRs. n-Alcohols (ethanol through octanol) were applied to α2(L262A)β4 nAChRs. As described previously for other nAChRs, short-chain alcohols enhanced, intermediate-chain alcohols had no effect and long-chain alcohols inhibited ACh responses in the wild-type receptor. For α2(L262A)β4 nAChRs the alcohol enhancing effect was absent, and the alcohol inhibitory action was increased. Although this suggests removal of an alcohol enhancing site through mutagenesis, we cannot rule out the enhancement of action at an alcohol inhibitory site.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: Key words Complex life cycle ; Developmental rate ; Growth rate ; Metamorphosis ; Amphibians
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Amphibian larvae vary tremendously in size at metamorphosis and length of larval period. We raised pond-dwelling four-toed salamander (Hemidactylium scutatum) larvae to test two models that predict a larva’s age and size at metamorphosis. The Wilbur-Collins model proposes that the developmental rate of a larva responds to changes in growth rate in an adaptive manner throughout the larval period, and that metamorphosis can be initiated after a minimum size has been reached. The Leips-Travis or fixed-rate model states that developmental rate is set early in the larval period, perhaps by early growth rate or food availability and their positive correlation with developmental rate, and that changes in growth rate during the larval period affect size at metamorphosis, but have no effect on the age of an individual at metamorphosis. A modified version of the Wilbur-Collins model suggests that a larva’s developmental rate becomes fixed about two-thirds of the way through the larval period, with changes in growth rate after that point only affecting size at metamorphosis. Larvae were raised on eight different feeding regimes which created two constant and six variable growth histories. Growth history did significantly affect size at metamorphosis. However, an a posteriori statistical test revealed a group of seven and an overlapping group of six treatments with indistinguishable lengths of larval period, indicating a general picture of a fixed developmental rate regardless of growth history. This result is unique among similar studies on invertebrates, fish, and frogs. There was no association between early growth or food level and development rates. Neither the Wilbur-Collins nor the Leips-Travis fixed-rate models were supported. The invariable developmental rate of Hemidactylium and recent osteological evidence from the literature suggest that larvae begin the process of metamorphosis as soon as they hatch, probably a trait selected for by strong predation pressure in the aquatic environment. A variety of different approaches (ecological, developmental, phylogenetic) are necessary to fully evaluate the adaptive nature of the timing of transitions between life cycle stages.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Physiological studies were made on the crabs Ucides cordatus (L.) and Callinectes danae sampled from populations living in “polluted” mangroves on the southeast littoral of Brazil. Analysis of Cu, Cd, Zn, and Fe of sediments and crab tissues showed interspecific differences in tissue concentrations, and significantly higher levels of Cu, Cd, and Zn in “polluted” populations compared to “unpolluted” crabs living in uncontaminated mangrove in the same geographical area. Individuals of both species from the polluted site showed significantly greater capacities for regulating blood osmotic concentrations at low salinity (9‰). However, U. cordatus showed a reduced hypo-regulatory ability in 34‰S. Differences in ionoregulation were also seen. “Polluted”C. danae showed significantly higher Na/ K-ATPase levels in posterior gills compared to “unpolluted” crabs. Oxygen consumption rates (M˙ O2) were elevated in U. cordatus, but depressed in C. danae from the “polluted” population. Individuals of both species from this site showed significantly lower O:N ratios, mainly because of an increased net efflux of ammonia. Adenylate energy charge (AEC) values of muscle and hepatopancreas in “unpolluted” and “polluted” populations of both species were not significantly different. These physiological differences are discussed in relation to the known acute physiological and metabolic effects of heavy metals in crustaceans, and interpretated in the light of possible adaptive changes following long-term exposure to contamination.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...