GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Physiological Society  (2)
  • 2000-2004  (2)
Material
Publisher
  • American Physiological Society  (2)
Language
Years
  • 2000-2004  (2)
Year
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Physiological Society ; 2002
    In:  Journal of Applied Physiology Vol. 93, No. 2 ( 2002-08-01), p. 517-525
    In: Journal of Applied Physiology, American Physiological Society, Vol. 93, No. 2 ( 2002-08-01), p. 517-525
    Abstract: The use of positive pressure mechanical ventilation can cause ventilator-induced lung injury (VILI). We hypothesized that hyperoxia in combination with large tidal volumes (Vt) would accentuate noncardiogenic edema and neutrophil infiltration in VILI and be dependent on stretch-induced macrophage inflammatory protein-2 (MIP-2) production. In rats ventilated with Vt 20 ml/kg, there was pulmonary edema formation that was significantly increased by hyperoxia. Total lung neutrophil infiltration and MIP-2 in bronchoalveolar lavage (BAL) fluid were significantly elevated, in animals exposed to high Vt both on room air (RA) and with hyperoxia. Hyperoxia markedly augmented the migration of neutrophils into the alveoli. Anti-MIP-2 antibody blocked migration of neutrophils into the alveoli in RA by 51% and with hyperoxia by 65%. We concluded that neutrophil migration into the alveoli was dependent on stretch-induced MIP-2 production. Hyperoxia significantly increased edema formation and neutrophil migration into the alveoli with Vt 20 ml/kg, although BAL MIP-2 levels were nearly identical to Vt 20 ml/kg with RA, suggesting that other mechanisms may be involved in hyperoxia-augmented neutrophil alveolar content in VILI.
    Type of Medium: Online Resource
    ISSN: 8750-7587 , 1522-1601
    RVK:
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2002
    detail.hit.zdb_id: 1404365-8
    SSG: 12
    SSG: 31
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Physiological Society ; 2000
    In:  American Journal of Physiology-Lung Cellular and Molecular Physiology Vol. 279, No. 5 ( 2000-11-01), p. L779-L789
    In: American Journal of Physiology-Lung Cellular and Molecular Physiology, American Physiological Society, Vol. 279, No. 5 ( 2000-11-01), p. L779-L789
    Abstract: In addition to its anticoagulant properties, heparin (HP), a complex polysaccharide covalently linked to a protein core, inhibits proliferation of several cell types including pulmonary artery smooth muscle cells (PASMCs). Commercial lots of HP exhibit varying degrees of antiproliferative activity on PASMCs that may due to structural differences in the lots. Fractionation of a potent antiproliferative HP preparation into high and low molecular weight components does not alter the antiproliferative effect on PASMCs, suggesting that the size of HP is not the major determinant of this biological activity. The protein core of HP obtained by cleaving the carbohydrate-protein linkage has no growth inhibition on PASMCs, demonstrating that the antiproliferative activity resides in the glycosaminoglycan component. Basic sugar residues of glucosamine can be replaced with another basic sugar, i.e., galactosamine, without affecting growth inhibition of PASMCs. N-sulfonate groups on these sugar residues of HP are not essential for growth inhibition. However, O-sulfonate groups on both sugar residues are essential for the antiproliferative activity on PASMCs. In whole HP, in contrast to an earlier finding based on a synthetic pentasaccharide of HP, 3-O-sulfonation is not critical for the antiproliferative activity against PASMCs. The amounts and distribution of sulfonate groups on both sugar residues of the glycosaminoglycan chain are the major determinant of antiproliferative activity.
    Type of Medium: Online Resource
    ISSN: 1040-0605 , 1522-1504
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2000
    detail.hit.zdb_id: 1477300-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...