GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 89 (2001), S. 7833-7840 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Transmission electron microscopy study of plan-view and cross-section samples of epitaxial laterally overgrown (ELOG) GaN samples is described. Two types of dislocation with the same type of Burgers vector but different line direction have been observed. It is shown that threading edge dislocations bend to form dislocation segments in the c plane as a result of shear stresses developed in the wing material along the stripe direction. It is shown that migration of these dislocations involves both glide and climb. Propagation of threading parts over the wing area is an indication of high density of point defects present in the wing areas on the ELOG samples. This finding might shed light on the optical properties of such samples. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 9 (2002), S. 3567-3572 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The growth due to the Rayleigh–Taylor (RT) instability of single-wavelength surface perturbations on planar foils of copper-doped beryllium [BeCu] was measured. These foils were accelerated by x-ray ablation, with a shaped drive designed to produce ∼1.5 ns of uniform acceleration. A range of wavelengths (λ=30–70 μm) was used with initial amplitudes η0/λ=0.03–0.04. Tabulated opacities from detailed atomic physics models, HOPE [J. Quant. Spectros. Radiat. Transf. 43, 381 (1990)], OPAL [Astrophys. J. 397, 717 (1992)] and super transition array (STA) [Phys. Rev. A 40, 3183 (1989)] were employed in simulations. Other ingredients which can affect modeling, such as changes in the equation of state and the radiation drive spectrum, were also examined. This calculational model agrees with the Nova single wavelength RT perturbation growth data for the BeCu. No adjustments to the modelling parameters were necessary. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The rod-pinch diode consists of an annular cathode and a small-diameter anode rod that extends through the hole in the cathode. With high-atomic-number material at the tip of the anode rod, the diode provides a small-area, high-yield x-ray source for pulsed radiography. The diode is operated in positive polarity at peak voltages of 1 to 2 MV with peak total electrical currents of 30–70 kA. Anode rod diameters as small as 0.5 mm are used. When electrode plasma motion is properly included, analysis shows that the diode impedance is determined by space-charge-limited current scaling at low voltage and self-magnetically limited critical current scaling at high voltage. As the current approaches the critical current, the electron beam pinches. When anode plasma forms and ions are produced, a strong pinch occurs at the tip of the rod with current densities exceeding 106 A/cm2. Under these conditions, pinch propagation speeds as high as 0.8 cm/ns are observed along a rod extending well beyond the cathode. Even faster pinch propagation is observed when the rod is replaced with a hollow tube whose wall thickness is much less than an electron range, although the propagation mechanism may be different. The diode displays well-behaved electrical characteristics for aspect ratios of cathode to anode radii that are less than 16. New physics understanding and important properties of the rod-pinch diode are described, and a theoretical diode current model is developed and shown to agree with the experimental results. Results from numerical simulations are consistent with this understanding and support the important role that ions play. In particular, it is shown that, as the ratio of the cathode radius to the anode radius increases, both the Langmuir–Blodgett space-charge-limited current and the magnetically limited critical current increase above previously predicted values. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 7 (2000), S. 346-358 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Ion beam self-pinched transport (SPT) experiments have been carried out using a 1.1-MeV, 100-kA proton beam. A Rutherford scattering diagnostic and a LiF nuclear activation diagnostic measured the number of protons within a 5 cm radius at 50 cm into the transport region that was filled with low-pressure helium. Time-integrated signals from both diagnostics indicate self-pinching of the ion beam in a helium pressure window between 35 and 80 mTorr. Signals from these two diagnostics are consistent with ballistic transport at pressures above and below this SPT pressure window. Interferometric measurements of electron densities during beam injection into vacuum are consistent with ballistic transport with co-moving electrons. Interferometric measurements for beam injection into helium show that the electron density increases quadratically with pressure through the SPT window and roughly linearly with pressure above the SPT window. The ionization fraction of the helium plateaus at about 1.5% for pressures above 80 mTorr. In the SPT window, the electron density is 3 to 20 times the beam density. Numerical simulations of these beam transport experiments produce results that are in qualitative agreement with the experimental measurements. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The Rayleigh–Taylor (RT) instability, which occurs when a lower-density fluid accelerates a higher-density layer, is common in nature. At an ablation front a sharp reduction in the growth rate of the instability at short wavelengths can occur, in marked contrast to the classical case where growth rates are highest at the shortest wavelengths. Theoretical and numerical investigations of the ablative RT instability are numerous and differ considerably on the level of stabilization expected. Presented here are the results of a series of laser experiments designed to measure the RT dispersion curve for a radiatively driven sample. Aluminum foils with imposed sinusoidal perturbations ranging in wavelength from 10 to 70 μm were ablatively accelerated with a radiation drive generated in a gold cylindrical hohlraum. A strong shock wave compresses the package followed by an ∼2 ns period of roughly constant acceleration and the experiment is diagnosed via face-on radiography. Perturbations with wavelengths ≥20 μm experienced substantial growth during the acceleration phase while shorter wavelengths showed a sharp drop off in overall growth. These experimental results compared favorably to calculations with a two-dimensional radiation-hydrodynamics code, however, the growth is significantly affected by the rippled shock launched by the drive. Due to the influence of the rippled shock transit phase of the experiment and ambiguities associated with directly extracting the physical amplitude of the perturbations at the ablation front from the simulations, direct comparison to the ablation front RT theory of Betti et al. [Phys. Plasmas 5, 1446 (1998)], was difficult. Instead, a numerical "experiment" was constructed that minimized the influence of the shock and this was compared to the Betti model showing quite good agreement. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 7 (2000), S. 3790-3796 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Experiments were performed to investigate the coupling between a ∼0.5 μs conduction-time, ∼0.5 MA conduction-current plasma opening switch (POS), and an electron-beam (e-beam) diode. Electrical diagnostics provided measurements of the voltage at the oil-vacuum insulator and at the diode as well as anode and cathode currents on the generator and load sides of the POS. These measurements were combined with a flow impedance model to determine the POS gap over a range of conduction times and e-beam diode impedances, and for two POS-to-load distances. A comparison of the inferred POS gap at peak power with the critical gap for magnetic insulation indicates that the POS gap is always saturated in both switch-limited and load-limited regimes. This POS gap-size scaling with load impedance is consistent with an opening mechanism dominated by erosion and not J×B forces. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 8 (2001), S. 387-390 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: One-and-one-half-dimensional particle-in-cell (PIC) modeling with restored short-encounter collisional behavior is used to model the interaction of high-intensity short laser pulses with plasmas. The role of Coulomb collisions in expanding thin plasma targets at solid density is particularly investigated. It is shown that collisions play an important role for plasma expansion and ion acceleration mechanisms, even at high laser intensities. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Experiments have been developed using high powered laser facilities to study the response of materials in the solid state under extreme pressures and strain rates. Details of the target and drive development required for solid-state experiments and results from two separate experiments are presented. In the first, thin foils were compressed to a peak pressure of 180 GPa and accelerated. A pre-imposed modulation at the embedded Rayleigh–Taylor unstable interface was observed to grow. The growth rates were fluid-like at early time, but suppressed at later time. This result is suggestive of the theory of localized heating in shear bands, followed by conduction of the heat into the bulk material, allowing for recovery of the bulk material strength. In the second experiment, the response of Si was studied by dynamic x-ray diffraction. The crystal was observed to respond with uni-axial compression at a peak pressure 11.5–13.5 GPa. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 89 (2001), S. 4275-4281 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Molecular dynamics has been employed to study the disordering and amorphization processes in SiC irradiated with Si and Au ions. The large disordered domains, consisting of interstitials and antisite defects, are created in the cascades produced by Au primary knock-on atoms (PKAs); whereas Si PKAs generate only small interstitial clusters, with most defects being single interstitials and vacancies distributed over a large region. No evidence of amorphization is found at the end of the cascades created by Si recoils. However, the structure analysis indicates that the large disordered domains generated by Au recoils can be defined as an amorphous cluster lacking long-range order. The driving force for amorphization in this material is due to the local accumulation of Frenkel pairs and antisite defects. These results are in good agreement with experimental evidence, i.e., the observed higher disordering rate and the residual disorder after annealing for irradiation with Au2+ are associated with a higher probability for the in-cascade amorphization or formation of a large disordered cluster. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...