GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences  (493)
Material
Publisher
  • Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences  (493)
Language
  • 1
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 68, No. 20 ( 2019), p. 205201-
    Abstract: 〈sec〉Recently, helicon plasma sources have aroused the great interest particularly in plasma-material interaction under fusion conditions. In this paper, the helicon wave antenna in helicon physics prototype experiment (HPPX) is optimized. To reveal the effect of the radial density configuration on wave field and energy flow, Maxwell's equations for a radially nonuniform plasma with standard cold-plasma dielectric tensor are solved. Helicon wave coupling and power deposition are studied under different types of antennas, different antenna lengths and driving frequencies by using HELIC. Through the numerical simulation, the optimal antenna structure and size are obtained, that is, half helix antenna, which works at 13.56 MHz and has a length of 0.4 m, can generate nonaxisymmetric radio frequency energy coupling to excite higher electron density.〈/sec〉〈sec〉The influences of different static magnetic fields and axis plasma densities on power deposition are also analyzed. It is found that the absorbed power of the plasma to the helicon wave has different peak power points in a multiple static magnetic field and axial plasma densities, and the overall coupling trend increases with static magnetic field increasing, but decreases with axis plasma density increasing. According to the simulation results, the ionization mechanism of helicon plasma is discussed. In order to further study the coupling of helicon wave with plasma in HPPX, the induced electromagnetic field and current density distribution are given when the plasma discharges. Under parabolic density distribution, the field intensity of the induced electric field at the edge is large, while neither the induced magnetic field nor current density changes much along the radial direction, the energy is distributed evenly in the whole plasma. Under the Gaussian density distribution, the induced electric field intensity is higher at the edge, while the induced magnetic field and current density in the center are much higher than at the edge. 〈/sec〉〈sec〉In this paper studied are the structure and size of helicon wave antenna, the influences of static magnetic field and axial plasma density on plasma power deposition and the distribution of induced electromagnetic field and current density during plasma discharge under different density distributions. This work will provide important theoretical basis for helicon wave antena design and relevant physical experiments on HPPX.〈/sec〉
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2019
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 64, No. 12 ( 2015), p. 126103-
    Abstract: Copper is an alternative material for aluminum electrode to meet the stringent requirement for high mobility and low resistance-capacitance (RC) delay of amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistor (TFT) for next generation of display technology due to its intrinsic high conductivity. However, low bonding strength between copper layer and insulator/glass and easy diffusion into active layer restrict its application in the field of TFT. In this work, a 30 nm thin film of molybdenum is introduced into copper electrode to form a copper-molybdenum source/drain electrode of a-IGZO TFT, which not only inhibits the diffusion of copper, but also enhances the interfacial adhesion between electrode and substrate. The obtained Cu-Mo TFT possesses a high mobility of ~9.26 cm2·V-1·s-1 and a low subthreshold swing of 0.11 V/Decade. Moreover, it has shorter current transfer length(~0.2 μm), lower contact resistance (~1072 Ω), and effective contact resistance (~1×10-4Ω·cm2) than the pure copper electrode. Cu-Mo electrode with low contact resistance and high adhesion to substrates paves the way to the application of copper in high conductivity interconnection of a-IGZO TFT.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2015
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2024
    In:  Acta Physica Sinica Vol. 73, No. 7 ( 2024), p. 072801-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 73, No. 7 ( 2024), p. 072801-
    Abstract: Neutron capture reaction is one of the neutron reactions and plays an important role in using reactor control rods and shell materials, designing nuclear device structures, and studying nuclear astrophysics S processes and element origins. The 4π BaF 〈 sub 〉 2 〈 /sub 〉 detection device has advantages such as high time resolution, low neutron sensitivity, and high detection efficiency, thus making it suitable for measuring neutron radiation capture reaction cross-section data. In order to fill the gap in our neutron capture reaction data in the keV energy range and improve their accuracy, the Key Laboratory of Nuclear Data at the Chinese Institute of Atomic Energy (CIAE) has established a Gamma Total Absorption Facility (GTAF), which consists of 28 hexagonal BaF 〈 sub 〉 2 〈 /sub 〉 crystals and 12 pentagonal BaF 〈 sub 〉 2 〈 /sub 〉 crystals to form a spherical shell with an external diameter of 25 cm and an internal diameter of 10 cm, covering 95.2% of the solid angles. The Back-n beam line of the Chinese Spallation Neutron Source (CSNS) is a back-streaming white beam line that covers neutron energy ranging from a few eV to several hundred MeV, making it suitable for measuring neutron capture cross-sections. The reaction cross-section data of 〈 sup 〉 197 〈 /sup 〉 Au is measured by using GTAF on the Back-n beam line. The measurement data are preliminarily background deducted through energy screening, PSD method, and crystal multiplicity screening. Subsequently, the background is analyzed and deducted based on the measurement data of 〈 sup 〉 nat 〈 /sup 〉 C and empty samples, and the yield of 〈 sup 〉 197 〈 /sup 〉 Au capture reaction is obtained. Resonance parameters are a set of parameters extracted from experimental data to describe the resonance curve, which can eliminate the influence of experimental conditions on resonance data and are more important than the cross-section obtained from experiments. The resonance energy, neutron resonance width, and gamma resonance width parameters of 〈 sup 〉 197 〈 /sup 〉 Au at 1–100 eV are fitted by using the SAMMY program. From the comparison between the resonance curves obtained from experimental measurements and the resonance parameters obtained from fitting with the ENDF/B-VIII.0 database, it can follow that the experimental measurement results are in good agreement with the database, nevertheless, there exist some differences in the resonance parameter, which may be due to the GTAF energy resolution, Back-n neutron spectrum measurement accuracy, and the experimental background deduction method. Our next work is to identify the sources of difference.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2024
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2003
    In:  Acta Physica Sinica Vol. 52, No. 9 ( 2003), p. 2324-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 52, No. 9 ( 2003), p. 2324-
    Abstract: Very high frequency (VHF) Plasma and its glow discharge mechanism during the deposition of μc-Si:H film have been studied by means of optical emission spectroscopy (OES) technique in this paper.From the measured OES spectra,where the valuable information on the Si,SiH,H and H2 intensities were provided,the influence of deposition conditions on the VHF plasma has been investigated.The intensitie s of SiH,H2 and H of VHF-gas deposition(GD) to deposit μc-Si:H were much high er than those of RF-GD to deposit a-Si:H.Under the experiment condition to depos it μc-Si:H,Si,SiH,the H and H2 intensities increased obviously with the excit ation frequency,and the variation of the deposition rate with the excitation fre quency was similar to that of SiH.The SiH intensity of VHF-GD became higher than its Si intensity as the hydrogen dilution ratio decreased.The influences of the hydrogen dilution ratio on the plasma optical emission spectra also depended on the reaction pressure,the excitation power as well as the excitation frequency. In the case of the hydrogen ratio (R=H2/SiH4)R=23,the SiH intensity decrease d monotonously against the excitation pressure at a low excitation power (e.g.5W ).But the SiH intensity increased at first, then decreased with the increase of the pressure at the high excitation power (e.g.11-55W).In the case of the hydrog en ratio R=5.7,the SiH intensity decreased monotonously against the excitation p ressure for all the excitation power.The Si,SiH,H and H2 intensities also incr eased with the excitation power and then trended to be saturated,and they are ea sier to saturate with the increase of the hydrogen dilution ratio.All the experi mental results demonstrated that the influences of the excitation frequency,the excitation power,the reaction pressure and the hydrogen dilution ratio were correlative,none of the deposition conditions is the critical factor to improve the deposition rate.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2003
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2009
    In:  Acta Physica Sinica Vol. 58, No. 2 ( 2009), p. 1120-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 58, No. 2 ( 2009), p. 1120-
    Abstract: Large-area (10 mm×10mm), vertically aligned α-Fe2O3 one-dimensional nanostructure (nanobelts and nanowires with controllable diameters) arrays are successfully synthesized by thermally oxidizing iron foil directly, which grow in the [110] direction of the hexagonal crystal. The morphology and microstructure of the synthesized arrays depend strongly on the growth conditions such as the oxygen pressure, temperature and reaction time. We found that the growth of α-Fe2O3 one-dimensional nanostructures follows a top-growth mechanism, in which the ratio of iron and oxygen atoms near the point of growth plays a key role.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2009
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 71, No. 5 ( 2022), p. 058503-
    Abstract: In this paper, the rare earth element praseodymium-doped indium tin zinc oxide semiconductor is used as the channel layer of the thin film transistor, and the aluminum oxide-based wet back channel etched thin film transistor is successfully prepared. The effect of N〈sub〉2〈/sub〉O plasma treatment on the back-channel interface of thin film transistor is studied, and the effect of treatment power and time on device performance are studied in detail. The results show that the good device performance can be obtained under certain power and time treatment, and the prepared device has good thermal stability of positive bias and negative bias under light conditions. The results from high-resolution transmission electron microscopy show that the amorphous structure of the metal oxide semiconductor material can effectively resist the wet etchant, and that no obvious component segregation phenomenon is found. Further, X-ray photoelectric spectroscopy tests show that N〈sub〉2〈/sub〉O plasma treatment can form an oxygen-rich, low-carrier-concentration interface layer at the interface. On the one hand, it can effectively resist the damage of the back channel caused by the plasma of plasma enhanced chemical vapor deposition (PECVD), and on the other hand, it acts as a passivation body of hydrogen from PECVD plasma, suppressing the generation of low-level donor state of hydrogen. This study provides an important reference for low-cost, high-efficiency thin film transistor performance optimization methods.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2022
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2011
    In:  Acta Physica Sinica Vol. 60, No. 4 ( 2011), p. 040507-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 60, No. 4 ( 2011), p. 040507-
    Abstract: Phase-field model is used and The dendrite growth of a Ni-40.83%Cu binaryalloy under were simulated by the model coupled with solute field and temperature field.The effects of solidification latent heat on the growth of equiaxed dendrite, distribution of solute field and temperature field in undercooled liquid alloy were analyzed.The results indicate that the dendritic has well-developed secondary arms as undercooling degree increases.Correspondently, the solute Peclet number and the tip speed increases, the tip radius decreases, and the solute segregation in solid-liquid interface increases. The results agree well with Ivantsov theory.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2011
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2021
    In:  Acta Physica Sinica Vol. 70, No. 22 ( 2021), p. 222801-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 70, No. 22 ( 2021), p. 222801-
    Abstract: The data of neutron capture cross section are very important for the research of nuclear astrophysics, advanced nuclear energy development. Owing to the limitation of neutron source and detector, the experimental data of neutron capture cross section in an energy range of 1 eV–10 keV were almost blank in China. The first Chinese gamma-ray total absorption facility has been constructed in the key laboratory of nuclear data at China institute of atomic energy, which consists of 40 BaF〈sub〉2〈/sub〉 detector units. The BaF〈sub〉2〈/sub〉 crystal shell with a thickness of 15 cm and an inner radius of 10 cm covers 95.2% of the solid angle. On-line measurement method of neutron capture reaction cross section is established on the back-streaming white neutron source of China spallation neutron source by using the upgraded facility. The cross section of 〈sup〉197〈/sup〉Au neutron capture reaction is measured for the first time under the experimental condition of irregular 30 mm neutron beam spot. The measured position of resonance peak is well consistent with the relevant data of ENDF evaluation database, which verifies the reliability of the measurement device and measurement technology, and thus laying the foundation for the acquisition of high precision cross section in future.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2021
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 65, No. 24 ( 2016), p. 247201-
    Abstract: Optical pump-terahertz (THz) probe spectroscopy is employed to investigate the photo-excited carrier relaxation process and the evolution of terahertz conductivity in ZnSe.With the pump pulse at a wavelength of 400 nm,the carrier relaxation process can be well fitted to a biexponential function.We find that the recombination process in ZnSe occurs through two components,one is the fast carrier recombination process,and the other is the slow recombination process.The fast carrier relaxation time constant is in a range from a few tens of picoseconds to hundreds of picoseconds, and slow carrier relaxation time constant ranges from one to several nanoseconds.We find that both the fast and the slow carrier relaxation time constant increase with the power density of pump beam increasing,which is related to the density of defects in the sample.Upon increasing the excitation power density,the defects are filled by the increased photo-excited carriers,which leads to an increase in the fast carrier relaxation time.While,the slow carrier relaxation time increasing with pump flux can be attributed to the filling of surface state.We also present the THz complex conductivity spectra of ZnSe at different delay times with a pump flux of 240 J/cm2.It is shown that the real part of the conductivity decreases with increasing the pump-probe delay time.The real part of the conductivity is positive and increases with frequency in each of the selective three delay times (2,20,and 100 ps),while the imaginary part is negative and decreases with frequency.The transient conductivity spectra at terahertz frequency in different delay times are fitted with Drude-Smith model.According to the fitting results from Drude-Smith model,with the pump-probe delay time increasing,the average collision time and the value of c1 decrease.Generally,a higher carrier density leads to a more frequent carrier-carrier collision,which means that the collision time should decrease with carrier density increasing. The abnormal carrier density dependence of collision time implies a predominance of backscattering in our ZnSe.The predominance of backscattering is also observed for the negative value of c1.The negative value of c1 indicates that some photocarriers are backscattered in ZnSe.With a delay time of 2 ps,the value of c1 approaches to -1,which indicates that the direct current (DC) conductivity is suppressed,and the maximum conductivity shifts toward higher frequency. With increasing the delay time,the value of c1 decreases:in this case DC conductivity dominates the spectrum.The study of the dynamics of photoinduced carriers in ZnSe provides an important experimental basis for designing and manufacturing the high speed optoelectronic devices.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2016
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 58, No. 5 ( 2009), p. 3302-
    Abstract: 6H-SiC single crystal specimens were implanted at 600 K with 100 KeV He ions to three successively increasing fluences and subsequently annealed at different temperatures ranging from 600℃ to 1200℃ in vacuum. After the annealing, the samples were investigated by using Raman scattering spectroscopy and photoluminescence spectrometry,respectively. Both of the two methods showed that the damage induced by helium-ion-implantation in the lattice is closely related to the dose. The thermal annealing brings about recovery of the damage,and different levels of damage require different annealing temperature to recover efficiently. It is indicated that different annealing stages involve different mechanisms,corresponding to recombination of point defects,formation of He-vacancy complexes,and nucleation and coarsening of bubbles,respectively. The experimental results indicate that high temperature implantation is an effective way to avoid amorphization of the implanted layer due to damage accumulation. Helium implantation can be used to introduce buried nanoscale cavities as the nucleation site for the buried oxide in a well defined region proposed for an alternative and more economical method of manufacturing SiC-on-Insulator (SiCOI).
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2009
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...