GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (5)
  • 2000-2004  (5)
Document type
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Paleoceanography, 19 (PA2019).
    Publication Date: 2017-01-23
    Description: The Denmark Strait plays an important role as a dense water gateway between the Arctic and the subpolar North Atlantic. Previous studies have shown that the volume transport over the sill is limited by hydraulic constraints. A regional ocean-circulation model (ROMS) with a horizontal resolution of ≈1/20° degree and 30 sigma layers in the vertical is applied to study the through flow characteristics for Last Glacial Maximum to Holocene conditions. The bathymetry of the gateway region is obtained from a geodynamic model that takes into account the differential ice loading of the adjacent continents. First, the upstream reservoir conditions are systematically changed to test hydraulic limitations for altered bathymetry. Generally, the through flow is less than the predicted maximal value from hydraulic theory by almost 50%. The results indicate that the reduction in gateway depth and aperture owing to glacial-isostatic processes alone lead to a considerable further reduction of the overflow, by approximately 33%, compared to the present day. Second, the through flow is modeled using average density profiles and wind stress from global model data. The reduction in the density-driven part of the overflow is partly compensated by an enhanced wind stress but is still reduced by a factor of 5. Owing to the narrowing of the strait during the glacial and the increased northerly wind, the North Icelandic Irminger Current was strongly reduced but still existent.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 28 (8). pp. 1619-1622.
    Publication Date: 2018-02-14
    Description: We report on a rapid high-resolution survey of the Denmark Strait overflow (DSO) as it crosses the sill, the first such program to incorporate full-water-column velocity profiles in addition to conventional hydrographic measurements. Seven transects with expendable profilers over the course of one week are used to estimate volume transport as a function of density. Our observations reveal the presence of a strongly barotropic flow associated with the nearly-vertical front dividing the Arctic and Atlantic waters. The seven-section mean transport of water denser than σθ=27.8 is 2.7±0.6Sv, while the mean transport of water colder than 2.0°C is 3.8±0.8 Sv. Although this is larger than the 2.9 Sv of θ 〈 2°C water measured by a 1973 current meter array, we find that a sampling of our sections equivalent to the extent of that array also measures 2.9Sv of cold water. Both the structure and magnitude of the measured flow are reproduced well by a high-resolution numerical model of buoyancy-driven exchange with realistic topography.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 105 (C12). 28,527-28,546.
    Publication Date: 2019-09-23
    Description: On the basis of hydrographic observations taken in the vicinity of Denmark Strait, a primitive equation model is used to investigate physical mechanisms that control the exchange through the strait. The dense water transport is topographically controlled and predictions by Whitehead [1998] and Killworth and McDonald [1993] are consistent with numerical model results. The distribution of temperature and thickness of the modeled plume is in good agreement with the high-resolution hydrographic data.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 108 (C6). p. 3181.
    Publication Date: 2019-04-29
    Description: We report on a combined modeling and observational effort to understand the Denmark Strait Overflow (DSO). Four cruises over the course of 3 years mapped hydrographic properties and velocity fields with high spatial resolution. The observations reveal the mean path of the dense water, as well as the presence of strong barotropic flows, energetic variability, and strong bottom friction and entrainment. A regional sigma coordinate numerical model of interbasin exchange using realistic bottom topography and an overflow forced only by an upstream reservoir of dense fluid is compared with the observations and used to further investigate these processes. The model successfully reproduces the volume transport of dense water at the sill, as well as the 1000-m descent of the dense water in the first 200 km from the sill and the intense eddies generated at 1–3 day intervals. Hydraulic control of the mean flow is indicated by a region supercritical to long gravity waves in the dense layer located approximately 100 km downstream of the sill in both model and observations. In addition, despite the differences in surface forcing, both model and observations exhibit similar transitions from mostly barotropic flow at the sill to a bottom-trapped baroclinic flow downstream, indicating the dominant role of the overflow in determining the full water column dynamics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 28 . pp. 3433-3436.
    Publication Date: 2018-02-14
    Description: A numerical circulation model with 1/6° resolution and an accurate topography formulation explains details of the observed circulation in the Irminger and Labrador Seas that were recently revealed by Lavender et al. [2000]. We show that the recirculation pattern is established through a locally wind induced flow controlled by the bottom topography and enhanced through remote baroclinic forcing by the dense plume of Denmark Strait overflow water. The basic circulation is a robust feature in a hierarchy of model setups. It exists in the purely barotropic case driven by steady winds and is even maintained when realistic daily forcing is added. The narrow recirculation zone is manifested by a sea level depression spanning from the Denmark Strait across the Irminger into the Labrador Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...