GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (1)
  • AMS (American Meteorological Society)  (1)
  • Frontiers
  • GEOMAR
  • 2000-2004  (2)
Document type
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 33 . pp. 2307-2319.
    Publication Date: 2018-04-10
    Description: Processes that influence the volume and heat transport across the Greenland–Scotland Ridge system are investigated in a numerical model with ° horizontal resolution. The focus is on the sensitivity of cross-ridge transports and the reaction of the subpolar North Atlantic Ocean circulation to changes in wind stress and buoyancy forcing on seasonal to interannual timescales. A general relation between changes in wind stress or cross-ridge density contrasts and the overturning transport of Greenland–Iceland–Norwegian Seas source water is established from a series of idealized experiments. The relation is used subsequently to interpret changes in an experiment over the years 1992–97 with realistic forcing. On seasonal and interannual timescales there is a clear correlation between heat flux and wind stress curl variability. The realistic model suggests a steady decrease in the strength of the cyclonic subpolar gyre of the North Atlantic with a corresponding decrease in heat transport during the 1990s
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 28 . pp. 3433-3436.
    Publication Date: 2018-02-14
    Description: A numerical circulation model with 1/6° resolution and an accurate topography formulation explains details of the observed circulation in the Irminger and Labrador Seas that were recently revealed by Lavender et al. [2000]. We show that the recirculation pattern is established through a locally wind induced flow controlled by the bottom topography and enhanced through remote baroclinic forcing by the dense plume of Denmark Strait overflow water. The basic circulation is a robust feature in a hierarchy of model setups. It exists in the purely barotropic case driven by steady winds and is even maintained when realistic daily forcing is added. The narrow recirculation zone is manifested by a sea level depression spanning from the Denmark Strait across the Irminger into the Labrador Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...