GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (19)
  • 1960-1964  (16)
Document type
Keywords
Years
Year
  • 1
    Publication Date: 2023-07-10
    Keywords: 93-603; 93-603B; Achomosphaera andalousiense; Achomosphaera crassipellis; Achomosphaera ramulifera; Achomosphaera spp.; Adnatosphaeridium multispinosum; Adnatosphaeridium robustum; Adnatosphaeridium spp.; Adnatosphaeridium vittatum; Amiculosphaera umbracula; Apectodinium parvum; Apteodinium australiense; Apteodinium tectatum; Araneosphaera araneosa; Areoligera sp.; Areoligera spp.; Areosphaeridium arcuatum; Areosphaeridium diktyoplokus; Areosphaeridium pectiniforme; Areosphaeridium spp.; Ascostomocystis granosa; Ataxiodinium choane; Batiacasphaera baculata; Batiacasphaera hirsuta; Batiacasphaera micropapillata; Batiacasphaera reticulata; Batiacasphaera sp.; Batiacasphaera sphaerica; Batiacasphaera spp.; Bitectatodinium spp.; Bitectatodinium tepikiense; Brigantedinium spp.; Caligodinium spp.; Cannosphaeropsis sp.; Cannosphaeropsis spp.; Cannosphaeropsis utinensis; Cerebrocysta bartonensis; cf. Leptodinium sp.; Chiropteridium mespilanum; Cleistosphaeridium sp.; Cleistosphaeridium spp.; Cordosphaeridium cantharellum; Cordosphaeridium cracenospinosum; Cordosphaeridium divergens; Cordosphaeridium exilimurum; Cordosphaeridium fibrospinosum; Cordosphaeridium gracile; Cordosphaeridium inodes; Cordosphaeridium multispinosum; Cordosphaeridium spp.; Corrudinium incompositum; Corrudinium spp.; Cribroperidinium giuseppei; Cribroperidinium spp.; Cyclonephelium exuberans; Cyclonephelium microfenestratum; Cyclonephelium semitectum; Cyclonephelium spp.; Cyclonephelium textum; Cyclopsiella elliptica; Dapsilidinium pastielsii; Dapsilidinium pseudocolligerum; Dapsilidinium simplex; Dapsilidinium spp.; Deep Sea Drilling Project; Deflandrea phosphoritica; Deflandrea spp.; DEPTH, sediment/rock; Dinoflagellate cyst indeterminata; Dinopterygium verriculum; Diphyes colligerum; Diphyes sp.; Diphyes spp.; Distatodinium craterum; Distatodinium paradoxum; Distatodinium virgatum; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Eatonicysta ursulae; Eocladopyxis peniculatum; Event label; Evittosphaerula spp.; Fibrocysta spp.; Filisphaera filifera; Gelatia sp.; Gelatia spp.; GEOMAR; Glaphyrocysta intricata; Glaphyrocysta vicina; Glomar Challenger; Helmholtz Centre for Ocean Research Kiel; Hemicystodinium congregatum; Heteraulacacysta campanula; Heteraulacacysta porosa; Heteraulacacysta spp.; Homotryblium abbreviatum; Homotryblium caliculum; Homotryblium floripes; Homotryblium oceanicum; Homotryblium pallidum; Homotryblium spp.; Homotryblium tenuispinosum; Homotryblium vallum; Homotryblium variabile; Hystrichokolpoma cinctum; Hystrichokolpoma granulatum; Hystrichokolpoma rigaudiae; Hystrichokolpoma sp.; Hystrichokolpoma spp.; Hystrichokolpoma unispina; Hystrichosphaeridium latirictum; Hystrichosphaeridium spp.; Hystrichosphaeridium tubiferum; Hystrichosphaeropsis complanata; Hystrichosphaeropsis obscura; Hystrichosphaeropsis rectangularis; Hystrichosphaeropsis spp.; Hystrichostrogylon sp.; Impagidinium aculeatum; Impagidinium aquaeductum; Impagidinium japonicum; Impagidinium maculatum; Impagidinium pallidum; Impagidinium paradoxum; Impagidinium patulum; Impagidinium sp.; Impagidinium spp.; Impagidinium velorum; Impletosphaeridium cracens; Invertocysta lacrymosa; Invertocysta spp.; Invertocysta tabulata; Kallosphaeridium biornatum; Kallosphaeridium capulatum; Kallosphaeridium curiosum; Kisselovia tenuivirgula; Labyrinthodinium truncatum; Leg93; Leiofusa spp.; Lejeunecysta beninensis; Lejeunecysta cinctoria; Lejeunecysta fallax; Lejeunecysta globosa; Lejeunecysta granosa; Lejeunecysta hyalina; Lejeunecysta lata; Lejeunecysta pulchra; Lejeunecysta spatiosa; Lejeunecysta spp.; Lentinia serrata; Lentinia spp.; Leptodinium sp.; Lingulodinium machaerophorum; Melitasphaeridium asterium; Melitasphaeridium choanophorum; Multispinula minuta; Nematosphaeropsis downiei; Nematosphaeropsis labyrinthus; Nematosphaeropsis lemniscata; Nematosphaeropsis sp.; Nematosphaeropsis spp.; Odontochitina spp.; Operculodinium centrocarpum; Operculodinium crassum; Operculodinium giganteum; Operculodinium israelianum; Operculodinium placitum; Operculodinium sp.; Operculodinium spp.; Operculodinium wallii; Sample code/label
    Type: Dataset
    Format: text/tab-separated-values, 14365 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-11-28
    Keywords: 93-603; 93-603B; Baculatisporites; Bacutricolporopollenites; Cicatricosisporites; Cingulatisporites; Cingulatisporites levispeciosus; Concavisporites; Concavisporites obtusangulus; Corrugatisporites; Cristatisporites; Cymatiosphaera spp.; Deep Sea Drilling Project; DEPTH, sediment/rock; Dinoflagellate cyst per unit mass; Divisisporites; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Event label; Extratriporopollenites; Foraminifera, linings per unit mass; Fungia debris per unit sediment mass; GEOMAR; Glomar Challenger; Granulatisporites; Helmholtz Centre for Ocean Research Kiel; Inaperturopollenites; Inaperturopollenites dubius; Inaperturopollenites hiatus; Inaperturopollenites polyformosus; Intratriporopollenites; Laevigatisporites; Laevigatosporites haardti; Leg93; Leiotriletes; Micrhystridium spp.; Minerisporites; Monocolpopollenites ingens; Monocolpopollenites observatus; Monocolpopollenites serratus; Monocolpopollenites sp.; Monocolpopollenites spectatus; Monocolpopollenites tranquillus; Palaeocystodinium golzowense; Palaeocystodinium sp.; Palaeocystodinium spp.; Pentadinium laticinctum; Phthanoperidinium comatum; Phthanoperidinium echinatum; Phthanoperidinium geminatum; Phthanoperidinium levimurum; Phthanoperidinium pseudoechinatum; Phthanoperidinium spp.; Pityosporites spp.; Plant debris per unit sediment mass; Pollen, reworked; Pollen and spores per unit sediment mass; Polyporopollenites; Polysphaeridium congregatum; Polysphaeridium sp.; Polysphaeridium subtile; Polysphaeridium zoharyi; Porocolpopollenites; Pterodinium cingulatum; Pterodinium premnos; Punctatisporites; Pyxidinopsis sp.; Reculacysta perforata; Reticulatisporites; Reticulatosphaera actinocoronata; Rottnestia borussica; Rugulatisporites; Samlandia chlamydophora; Samlandia sp.; Sample code/label; Scolecodonta per unit sediment mass; Selenopemphix armata; Selenopemphix coronata; Selenopemphix nephroides; Selenopemphix sp.; Selenopemphix spp.; Spiniferites; Spiniferites bentori; Spiniferites cornutus; Spiniferites elongatus; Spiniferites hyperacanthus; Spiniferites membranaceus; Spiniferites mirabilis; Spiniferites monilis; Spiniferites pachydermus; Spiniferites pseudofurcatus; Spiniferites ramosus; Spiniferites rubinus; Spiniferites scabratus; Spiniferites sp.; Spiniferites spp.; sum atradinium sp.; Systematophora placacantha; Systematophora sp.; Systematophora spp.; Tanyosphaeridium spp.; Tasmanites per unit sediment mass; Tectatodinium pellitum; Tectatodinium psilatum; Tectatodinium sp.; Tectatodinium spp.; Tenua microcysta; Tenua microsphaera; Tetracolporopollenites; Tetradopollenites; Thalassiphora delicata; Thalassiphora fenestrata; Thalassiphora pansa; Thalassiphora pelagica; Thalassiphora spp.; Triatriopollenites; Tricolpopollenites; Tricolpopollenites microhenrici; Tricolporopollenites; Tricolporopollenites wallensis; Trinovantedinium capitatum; Triplanosporites; Triplanosporites sinuosus; Triplanosporites tertiarius; Triporopollenites; Triporopollenites coryloides; Triporopollenites undulatus; Trivestibulopollenites; Tuberculatisporites; Tuberculodinium vancampoae; Verucatisporites; Verucatosporites sp.; Veryhachium; Wetzeliella astra; Wetzeliella spp.; Zonalapollenites viridifluminipites
    Type: Dataset
    Format: text/tab-separated-values, 10962 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-11-28
    Keywords: 81-552; 81-552A; Achomosphaera andalousiense; Achomosphaera crassipellis; Achomosphaera ramulifera; Achomosphaera spp.; Adnatosphaeridium robustum; Algidasphaeridium minutum; Aquilapollenites; Areosphaeridium fenestratum; Areosphaeridium pectiniforme; Ataxiodinium choane; Baculatisporites; Batiacasphaera baculata; Batiacasphaera hirsuta; Batiacasphaera micropapillata; Batiacasphaera sphaerica; Batiacasphaera spp.; Bitectatodinium tepikiense; Cannosphaeropsis spp.; Cannosphaeropsis utinensis; Cerebrocysta bartonensis; Chiropteridium lobospinosum; Cleistosphaeridium sp.; Cordosphaeridium cantharellum; Cordosphaeridium cracenospinosum; Cordosphaeridium inodes; Cordosphaeridium spp.; Cribroperidinium giuseppei; Cribroperidinium spp.; Cyclonephelium spp.; Cymatiosphaera spp.; Dapsilidinium pastielsii; Dapsilidinium pseudocolligerum; Deep Sea Drilling Project; Deflandrea phosphoritica; Deflandrea spp.; Depth, composite; DEPTH, sediment/rock; Dinoflagellate cyst; Dinoflagellate cyst indeterminata; Dinoflagellate cyst per unit mass; Dinopterygium cladoides; Diphyes colligerum; Distatodinium craterum; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Event label; Filisphaera filifera; Foraminifera, linings per unit mass; Fungia debris per unit sediment mass; Gelatia sp.; Glaphyrocysta spp.; Glomar Challenger; Heteraulacacysta campanula; Heteraulacacysta porosa; Heteraulacacysta spp.; Homotryblium caliculum; Homotryblium spp.; Hystrichokolpoma granulatum; Hystrichokolpoma spp.; Impagidinium aculeatum; Impagidinium japonicum; Impagidinium pallidum; Impagidinium paradoxum; Impagidinium patulum; Impagidinium sp.; Impagidinium spp.; Impagidinium velorum; Inaperturopollenites; Intratriporopollenites; Invertocysta tabulata; Kisselovia spp.; Labyrinthodinium truncatum; Laevigatisporites; Leg81; Leiofusa; Leiotriletes; Lejeunecysta hyalina; Lejeunecysta spp.; Leptodinium sp.; Lingulodinium machaerophorum; Melitasphaeridium asterium; Melitasphaeridium choanophorum; Monocolpopollenites tranquillus; Nematosphaeropsis downiei; Nematosphaeropsis labyrinthus; Nematosphaeropsis spp.; North Atlantic/PLATEAU; Operculodinium centrocarpum; Operculodinium crassum; Operculodinium sp.; Operculodinium spp.; Palaeocystodinium golzowense; Pentadinium laticinctum; Phthanoperidinium echinatum; Phthanoperidinium geminatum; Phthanoperidinium multispinum; Pityosporites spp.; Plant debris per unit sediment mass; Pollen and spores per unit sediment mass; Pollen indeterminata; Polyporopollenites carpinoides; Polysphaeridium zoharyi; Polyvestibulopollenites verus; Pterodinium cingulatum; Punctatisporites; Pyxidiella simplex; Reticulatisporites; Reticulatosphaera actinocoronata; Rottnestia borussica; Sample code/label; Scolecodonta per unit sediment mass; Selenopemphix armata; Selenopemphix nephroides; Spiniferites bentori; Spiniferites bulloideus; Spiniferites elongatus; Spiniferites frigidus; Spiniferites mirabilis; Spiniferites pseudofurcatus; Spiniferites ramosus; Spiniferites sp.; Spiniferites spp.; Spores, reworked; Systematophora placacantha; Tasmanites per unit sediment mass; Tectatodinium pellitum; Tectatodinium psilatum; Tectatodinium sp.; Tectatodinium spp.; Thalassiphora delicata; Thalassiphora pansa; Thalassiphora spp.; Triatriopollenites myricoides; Tricolpopollenites; Tricolpopollenites microhenrici; Tricolporopollenites; Trinovantedinium capitatum; Triporopollenites coryloides; Trivestibulopollenites betuloides; Tuberculatisporites
    Type: Dataset
    Format: text/tab-separated-values, 6528 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-11-28
    Keywords: 81-555; Achomosphaera andalousiense; Achomosphaera crassipellis; Achomosphaera ramulifera; Areosphaeridium arcuatum; Areosphaeridium diktyoplokus; Ataxiodinium choane; Batiacasphaera baculata; Batiacasphaera hirsuta; Batiacasphaera sphaerica; Bitectatodinium tepikiense; Brigantedinium spp.; Cannosphaeropsis utinensis; Cingulatisporites; Cribroperidinium giuseppei; Cymatiosphaera spp.; Dapsilidinium pastielsii; Dapsilidinium pseudocolligerum; Deep Sea Drilling Project; DEPTH, sediment/rock; Dinoflagellate cyst indeterminata; Dinoflagellate cyst per unit mass; Diphyes colligerum; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Fibrocysta axialis; Fibrocysta fusiforma; Fibrocysta spp.; Filisphaera filifera; Foraminifera, linings per unit mass; Fungia debris per unit sediment mass; GEOMAR; Glaphyrocysta semitecta; Glomar Challenger; Helmholtz Centre for Ocean Research Kiel; Homotryblium oceanicum; Homotryblium spp.; Homotryblium variabile; Hystrichokolpoma cinctum; Hystrichosphaeropsis obscura; Impagidinium aculeatum; Impagidinium aquaeductum; Impagidinium patulum; Impagidinium sp.; Impagidinium spp.; Impagidinium velorum; Inaperturopollenites; Inaperturopollenites dubius; Inaperturopollenites hiatus; Inaperturopollenites magnus; Inaperturopollenites polyformosus; Intratriporopollenites; Invertocysta lacrymosa; Invertocysta tabulata; Labyrinthodinium truncatum; Laevigatisporites; Laevigatosporites haardti; Leg81; Leiosphaera spp.; Leiotriletes; Lejeunecysta fallax; Lejeunecysta globosa; Lingulodinium machaerophorum; Monocolpopollenites ingens; Monocolpopollenites tranquillus; Mycrhistidium spp.; Nematosphaeropsis downiei; Nematosphaeropsis labyrinthus; North Atlantic/PLATEAU; Operculodinium centrocarpum; Operculodinium crassum; Operculodinium giganteum; Operculodinium placitum; Operculodinium sp.; Operculodinium spp.; Palaeocystodinium golzowense; Pentadinium laticinctum laticinctum; Pityosporites spp.; Plant debris per unit sediment mass; Pollen and spores per unit sediment mass; Pollen indeterminata; Polysphaeridium zoharyi; Pterodinium premnos; Reticulatisporites; Reticulatosphaera actinocoronata; Sample code/label; Scolecodonta per unit sediment mass; Selenopemphix nephroides; Spiniferites bentori; Spiniferites bulloideus; Spiniferites elongatus; Spiniferites hyperacanthus; Spiniferites membranaceus; Spiniferites mirabilis; Spiniferites pseudofurcatus; Spiniferites ramosus; Spiniferites spp.; Systematophora placacantha; Tasmanites; Tectatodinium pellitum; Tectatodinium psilatum; Tectatodinium simplex; Tectatodinium spp.; Triatriopollenites myricoides; Tricolpopollenites henrici; Tricolporopollenites; Tricolporopollenites wallensis; Triporopollenites coryloides
    Type: Dataset
    Format: text/tab-separated-values, 2200 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Quartz–sillimanite segregations, quartz–albite lithologies (Ab95–98), and Kiruna-type low-Ti iron-oxide deposits are associated with late- to post-tectonic (c. 1055 Ma) leucogranites of Lyon Mountain Gneiss (LMG) in the Adirondack Mountains, New York State. Most recent interpretations of these controversial features, which are global in occurrence, favour hydrothermal origins in agreement with results presented here.Field relations document that quartz–sillimanite veins and nodules cut, and therefore post-date, emplacement of host LMG leucogranites. Veins occur in oriented fracture networks, and aligned trains of nodules are interpreted as disrupted early veins. Late dykes of leucogranite cut veins and nodules demonstrating formation prior to terminal magmatism. Veins and nodules consist of sillimanite surrounded by quartz that commonly embays wall-rock feldspar indicating leaching of Na and K from LMG feldspar by acidic hydrothermal fluids. Subsequent, and repeated, ductile flow disrupted earlier veins into nodular fragments but produced little grain shape fabric.Geochemical and petrographic studies of quartz–albite rock indicate that it formed through metasomatic replacement (albitization) of LMG microperthite by sodic hydrothermal fluids that resulted in diagnostic checkerboard albite. Low-Ti iron-oxide ores are commonly associated with the quartz–albite sub-unit, and it is proposed that hydrothermal fluids related to albitization transported Fe as well. The regional extent of sodic alteration suggests large quantities of surface-derived hydrothermal fluids. Fluid inclusion and oxygen isotope data are consistent with high temperature, regionally extensive fluids consisting primarily of evolved surface-derived brines enriched in Na and Cl. Quartz–sillimanite veins and nodules, which are significantly more localised phenomena and require acidic fluids, were most likely formed from local magmatic fluids in the crystallizing carapaces of LMG plutons.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 113 (2000), S. 44-47 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We describe how to apply classical constraint dynamics to problems in diffusion Monte Carlo. We apply the method to rigid and nonrigid water molecules with an internal rotational degree of freedom. The method is applicable to a wide variety of problems. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 113 (2000), S. 1366-1371 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Ground state expectation values are obtained by using a path integral ground state Monte Carlo method. The method allows calculations of ground state expectation values without the extrapolations often used with Green's function and diffusion Monte Carlo methods. We compare our results with those of Green's function Monte Carlo by calculating some ground state properties of the van der Waals complex He2Cl2 as well as the infinite systems liquid and solid 4He. Advantages and disadvantages of the present method with respect to previous ones are discussed. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1365-2516
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Summary.  A 7½-year-old boy with severe haemophilia A had increasing discomfort and pain in his left knee after sledding on ice and landing on his knees. Left knee pain persisted for days despite recombinant factor VIII replacement. Imaging studies showed that by day 10 a popliteal cyst had ruptured, with diffusion of blood into the calf muscles. This case illustrates another possible bleeding complication in patients with a bleeding disorder and a popliteal cyst.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of food science 69 (2004), S. 0 
    ISSN: 1750-3841
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Notes: : The efficacy of cyclodextrins for entrapping volatile beany flavor compounds in soymilk was studied using gas chromatography-headspace solid-phase microextraction and descriptive sensory analysis. Cyclodextrin addition reduced headspace concentrations of most beany flavor compounds, with α-cyclodextrin being more effective than γ-cyclodextrin. During 1 wk of 7 °C storage, soymilks with cyclodextrins maintained reduced headspace concentrations of volatile compounds associated with beany flavors. However, no significant difference was found by the sensory panel between soymilks with and without added cyclodextrins either 1 or 7 d after manufacture. This discrepancy could be because of the high concentrations of hexanal and other beany flavor compounds that might have had an overpowering effect on the panelists.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant pathology 49 (2000), S. 0 
    ISSN: 1365-3059
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Experimental data were used to test the hypothesis that the effective fungicide dose (ED) – the dose required to achieve a given level of disease suppression – varies in a predictable manner according to the pattern of development of the wheat canopy. Replicated and randomized field plots received a single systemic fungicide spray at either zero (control), 0·25, 0·5, 0·75 or 1·0 dose (the recommended dose), at one of eight timings from April to June. Wheat cultivars and locations for experiments were selected to promote epidemics of septoria tritici spot and yellow rust caused by Septoria tritici (anamorph of Mycosphaerella graminicola) and Puccinia striiformis, respectively. Logistic or exponential disease progress curves were fitted to disease severity data and used to estimate the date of disease onset (t0) and relative epidemic growth rate (r) on each leaf layer for each treatment. Area under the disease progress curve (AUDPC) values were used to construct fungicide dose by spray timing response surfaces for each of the upper four leaves. A parsimonious function, with an exponential form in the dose–response dimension and a normal distribution in the timing dimension described a high proportion of the variation in AUDPC (R2 values ranging from 0·73 to 0·97). Consistent patterns of treatment effect were noted across pathogen species, leaf layers, sites and seasons. Fungicide applications that coincided with full leaf emergence delayed t0 on that leaf layer. Treatments applied after full leaf emergence did not delay t0, but reduced r. Progressively earlier or later treatments, or lower doses, had decreasing effects. AUDPC was affected more by t0 than r. AUDPC response surface parameter estimates showed that curvature of the dose–response was not affected by spray timing, but appeared to be a characteristic of the fungicide–pathogen combination. However, the lower asymptote of the dose–response curve, and hence the ED, varied substantially with spray timing. The pattern of change in ED with spray timing was consistent across a range of leaf layers, pathosystems and seasons, and the spray timing at which the ED was minimized varied only within a small range, around the time of leaf emergence. In contrast, variation in untreated disease severity, resulting from variation in initial inoculum and weather, was large. It was concluded that the main value of disease forecasting schemes may be in their capacity to predict the level of untreated disease, to which the economic optimum, or ‘appropriate’, dose relates. Spray timing determines the part of the canopy where disease will be efficiently controlled and hence the green leaf area saved. Timing decisions should relate to observations of emergence of those leaf layers important to yield.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...