GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (5)
  • Kiel : Inst. für Meereskunde, Abt. Meeresphysik
  • Technische Universität Clausthal Arbeitsgruppe Meerestechnik und Marine Mineralrohstoffe
  • 2000-2004  (2)
  • 1985-1989  (3)
Document type
Years
Year
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 93 (C7). pp. 8111-8118.
    Publication Date: 2017-09-26
    Description: The eastern part of the North Atlantic subtropical gyre is found in the region between the Azores and the Cape Verde Islands. A study of the gyre structure in the area east of 35°W between 8°N and 41°N is presented. The geostrophic flow field determined from historical temperature-salinity data sets by objective analysis indicates seasonal variations in shape but no significant changes in the magnitude of volume transports. The eastern part of the gyre has a larger east-west and smaller north-south extension in summer compared with the winter season. The center shifts by about 2° latitude to the south from winter to summer. Long-term temperature time series (6.5 years) from a mooring near the Azores are consistent with these results, showing always a consistent temperature increase at the beginning of the year which is apparently due to the displacement of the northeastern part of the gyre. A comparison between the mean flow fields and fields obtained from individual zonal sections indicates large deviations north and south of the gyre but small deviations within the gyre.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 94 (C5). pp. 6159-6168.
    Publication Date: 2017-09-26
    Description: The Azores Current, south of the Azores Archipelago, is part of the subtropical North Atlantic gyre. Using an international hydrographic data set, we analyze mean and seasonal geostrophic transport fields in the upper 800 m of the ocean in order to determine the origin of the Azores Current in the western basin and seasonal changes in the related flow. Geostrophic currents are obtained by using the method applied by Stramma (1984) in the eastern basin. The Azores Current is found to originate in the area of the Southwest Newfoundland Rise (Figure 10). In winter an almost uniform current connects this region of origin with the Azores Current, while a branching into two current bands is observed in summer, with the southern band forming a marked cyclonic loop. Within the upper 800 m, all of the transport in the northern band and about 70% of the transport in the southern band recirculates in the eastern basin. Additionally, expendable bathythermograph data from the Azores Current region indicate an increase of eddy potential energy from winter to summer.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 94 (C4). pp. 4757-4762.
    Publication Date: 2019-02-27
    Description: A 4-year expendable bathythermograph data set (1984–1987) from the area between southern Brazil and the Antarctic Peninsula provides information on the interannual variability of front locations. Two boundaries of subtropical water at different depths are identified north and south of the Brazil Current-Falkland (Malvinas) Current confluence zone. The northern Subtropical Front is displaced over a large part of the Argentine Basin from one observational period to the other. The shallow southern Subtropical Front appears fixed to the Falkland Escarpment. The Polar Front and Subantarctic Front locations do not vary much, except for one case where a cold core eddy in the Polar Frontal Zone causes a large northward displacement of the Subantarctic Front.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 27 (9). pp. 1243-1246.
    Publication Date: 2018-02-14
    Description: The salinity, temperature and current distributions have been measured during the TROPAC cruise (Oct./Nov. 1996) at two sections, i.e. 143°E and 150°E, during the final phase of the 1995/1996 La Niña. The results present evidence that the fresh pool and the salinity front at its eastern boundary had moved far to the west, and that a barrier layer existed in that phase. The observed currents support the idea that advective processes play an essential role in creating the thermohaline structure during this ENSO phase. In relation with this process, it is found that the westward subduction mechanism of relatively dense eastern equatorial waters may apply during that phase.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 27 (8). pp. 1187-1190.
    Publication Date: 2018-02-13
    Description: Two zonal sections at 11°S in the South Atlantic, separated in time by 11 years, provide temperature differences in the deep ocean. The aim of this case study is to check whether intrinsic temperature changes are sufficiently large to identify long-term water mass property variations which could be related to climate change. Potential temperature differences on isobaric surfaces in the deep ocean here reach several tenths of °C. They can be caused by vertical (cross-isopycnal) or horizontal (isopycnal) advection and mixing, or by intrinsic water mass changes. The effect of vertical transport is removed by using neutral (density) surfaces. The effect of horizontal transport is determined by using a mixing parameterization for temperature and silica on neutral surfaces. The residual intrinsic temperature changes are, with a few local exceptions, within the range of the ±0.05°C uncertainty, and the temperature changes can thus be explained by advection and mixing alone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...