GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (14)
  • 1985-1989  (5)
  • 1980-1984  (3)
Document type
Keywords
Language
Years
Year
  • 1
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: Karte, Illustration, Graphen
    Edition: Online-Ausgabe 2020 1 Online-Ressource (94 Seiten = 3,6 MB)
    Language: German
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: Online-Ressource (158 Seiten = 8 MB) , Illustrationen, Graphen, Karten
    Language: German
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Type of Medium: Book
    Pages: 108 S , graph. Darst
    Series Statement: Berichte aus dem Sonderforschungsbereich 313
    Language: Undetermined
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Book
    Book
    Kiel : Geolog.-Paläontolog. Inst. d. Univ.
    Keywords: Hochschulschrift
    Type of Medium: Book
    Pages: 108 S , graph. Darst., Kt , 30 cm
    Series Statement: Berichte aus dem Sonderforschungsbereich 313, Sedimentation im Europäischen Nordmeer Nr. 2
    Language: German
    Note: Zugl.: Kiel, Univ., Diss., 1985 , In Maschinenschr. vervielf.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: The response of the benthos to the break up of anoxia in the Kiel Bight (Western Baltic Sea), and to three succeeding events of “external” food supply, consisting of a settled autumn plankton bloom, resuspended matter and macrophyte input during winter, and of a sedimented spring phytoplankton bloom, is described on a community level. The first input of oxygen broke up anoxic conditions and made stored food resources available to decomposition. This “internal” food supply, mainly consisting of protein (folin positive matter), was followed by a drastic increase in heat production and ATP-biomass and caused a period of low redox potential, which lasted for several weeks. During this phase, a plankton bloom (dinoflagellates and diatoms) settled to the sea floor. Although there was an immediate response of benthic activity, this food input was not completely consumed by the strongly disturbed benthic community. During winter resuspended matter and the input of macrophyte debris caused another maximum in benthic activity and biomass despite the low temperature. The response to sedimentation of cells from a diatom bloom during mid March was also without any time lag and was consumed within 5–6 wk. A comparison of the amount of particles collected in a sediment trap with the increase of organic matter in the sediment demonstrated that the sediment collected four times (autumn) and seven to eight times (spring) more than measured by the sediment trap. Strong indications of food limitation of benthic activity were found. During autumn and winter these indications were caused more by physical than by biological processes. The three events of “external” food supply caused a temporary shift in the type of metabolism towards fermentation processes and reduced the redox potential. In spring the development of the benthic community was still being strongly influenced by the events of the preceding summer and autumn.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-08-05
    Description: The benthic diagenetic model OMEXDIA has been used to reproduce observed benthic pore water and solid phase profiles obtained during the OMEX study in the Goban Spur Area (N.E. Atlantic), and to dynamically model benthic profiles at site OMEX III (3660-m depth), with the sediment trap organic flux as external forcing. The results of the dynamic modelling show that the organic flux as determined from the lowermost sediment trap (400 metres above the bottom) at OMEX III is insufficient to explain the organic carbon and pore water profiles. The best fitting was obtained by maintaining the seasonal pattern as observed in the traps, while multiplying the absolute values of the flux by a factor of 1.85. The “inverse modelling” of diagenetic processes resulted in estimates of total mineralisation rate and of degradability of the organic matter at the different stations. These diagenetic model-based estimates are used to constrain the patterns of lateral and vertical transports of organic matter. Using the observed degradability as a function of depth, we show that the observed organic matter fluxes at the different depths are consistent with a model where at all stations along the gradient the same vertical export flux occurs at 200 m, and where organic matter sinks with a constant sinking rate of around 130 m d−1. If sinking rates were higher, in the order of 200 m d−1, the observations could be consistent with an off-slope gradient in export production of approximately a factor of 1.5 between the shallowest and deepest sites. The derived high degradability of the arriving organic matter and the consistency of the mass fluxes at the different stations exclude the possibility of a massive deposition, on the margin, of organic matter produced on the shelf or shelf break. However, other hypotheses to explain the patterns found in the sediment trap data of both OMEX and other continental margin study sites also suffer from different inconsistencies. Further, close examination of the flow patterns at the margin will be needed to examine the question.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  (PhD/ Doctoral thesis), Christian-Albrechts-Universität Kiel, Kiel, Germany, 105 pp
    Publication Date: 2018-03-21
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  (Diploma thesis), Christian-Albrechts-Universität zu Kiel, Kiel, Germany, 70 pp
    Publication Date: 2020-03-18
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Institut für Meereskunde der Universität Kiel
    In:  Berichte aus dem Sonderforschungsbereich 313, Sedimentation im Europäischen Nordmeer, 2 . Institut für Meereskunde der Universität Kiel, Kiel, Germany, 112 pp.
    Publication Date: 2020-08-06
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Springer
    In:  In: The Northern North Atlantic: A Changing Environment. , ed. by Schäfer, P., Ritzrau, W., Schlüter, M. and Thiede, J. Springer, Berlin, Germany, pp. 69-79.
    Publication Date: 2020-04-01
    Description: A decade of particle flux measurements providse the basis for a comparison of the eastem and westem provinces ofthe Nordic Seas. Ice-related physical and biological seasonality as well as pelagic settings jointly control fluxes in the westem Polar Province which receives southward flowing water of Polar origin. Sediment trap data from this realm highlight a predominantly physical flux control which leads to exports of siliceous particles within the biological marginal ice zone as a prominent contributor. In the northward flowing waters of the eastem Atlantic Province, feeding Strategie . life histories and the succession of dominant mesozooplankters (copepods and pteropods) are central in controlling fluxes. Furthermore, more calcareous matter is exported here with a shift in flux seasonality towards surnrner/autumn. Dominant pelagic processes modeled numerically as to their impact on annual organic carbon exports for both provinces confirrn that interannual flux variability is related to changes in the respective control mechanisms. Annual organic carbon exports are strikingly similar in the Polar and Atlantic Provinces (2.4 and 2.9 g m-2 y-1 at 500 m depth). despite major differences in flux control. The Polar and Atlantic Provinces. however, can be distinguished according to annual fluxes of opal ( l.4 and 0.6 g m-2 y-1) and carbonate (6.8 and 10.4 g m-2 y-1). lnterannual variability may blur this in single years. Thus. it is vital to use multi-annual data sets when including particle exports in general biogeochemical province descriptions. Vertical flux profiles (collections from 500 m, l000 min both provinces and 300-600 m above the seafloor deviate from the general vertical decline of fluxes due to particle degradation during sinking. At depths 〉 1000 m secondary fluxes (laterally advected/re uspended particles) are often juxtaposed to primary (pelagic) fluxes, a pattem which is most prominent in the Atlantic Province. Spatial variability within theAtlantic Province remains poorly understood. and the same holds true for interannual variability. No proxies are at hand for this province to quantitatively relate fluxes to physical or biological pelagic properties. For the easonally ice-covered Polar Province a robust relationship exists between particle export and ambient ice-regime (Ramseier et al. this volume; Ramseier et al. 1999). Spatial flux pattems may be differentiated and interannual variability can be analyzed in this manner to improve our ability to couple pelagic export pattems with benthic and geochemical sedimentary processes in seasonally ice-covered seas.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...