GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (83)
  • 1990-1994  (15)
Document type
Keywords
Language
Years
Year
  • 1
    Book
    Book
    Kiel : GEOMAR Forschungszentrum für marine Geowiss., Univ.
    Keywords: Hochschulschrift ; Grönlandsee ; Meereis ; Drift ; Nordpolarmeer ; Meeresgeologie ; Grönlandsee ; Meereis ; Drift ; Nordpolarmeer ; Meeresgeologie
    Type of Medium: Book
    Pages: 133 S. , Ill., graph. Darst., Kt.
    Series Statement: GEOMAR-Report 4
    Language: German
    Note: Zugl.: Kiel, Univ., Diss., 1990
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource ( 272Seiten = 38MB) , Ill., graph. Darst., Kt
    Edition: 2022
    Language: German
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 410 (2001), S. 427-428 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Those of us living in the northern parts of Europe or North America can see the legacy of the ice ages from a brief look out of the window. Several times during the past million years, huge ice domes, kilometres thick, have covered vast areas of the Northern Hemisphere. On land, U-shaped mountain ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: To establish a chronology of the Holocene transgression in Arctic Siberia, a total of 14 sediment cores from the Laptev Sea continental slope and shelf were studied covering the water depth range between 983 and 21 m. The age models of the cores were derived from 119 radiocarbon datings, which were all analyzed on marine biogenic calcite (mainly bivalve shells). The oldest shell sample was found at the slope and dates back to about 15.3 cal. ka, indicating that the time interval investigated starts prior to the onset of the meltwater pulse 1A (similar to 14.2 cal. ka) when global sea-level rose dramatically. The inundation history was reconstructed mainly on the basis of major changes in average sedimentation rates (ASR), but also other sedimentological parameters were incorporated. A diachronous reduction in ASR from the outer to the inner shelf region is recognized, which was related to the southward migration of the coastline as the primary sediment source. We estimate that the flooding of the 50-, 43-, and 31-m isobaths was completed by approximately 11.1, 9.8, and 8.9 cal. ka, and that Holocene sea-level highstand was approached near 5 cal. ka. Between these time intervals, sea level in the Laptev Sea rose by 5.4, 13.3, and 7.9 mm/year, respectively.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: Three long sediment cores from the Makarov Basin have been subjected to detailed paleomagnetic and rock magnetic analyses. Investigated sediments are dominated by normal polarity including short reversal excursions, indicating that most of the sediments are of Brunhes age. In general, the recovered sediments show only low to moderate variability in concentration and grain size of the remanence-carrying minerals. Estimations of relative paleointensity variations yielded a well-documented succession of pronounced lows and highs that could be correlated to published reference curves. However, together with five accelerator mass spectrometry C-14 ages and an incomplete Be-10 record, still two different interpretations of the paleomagnetic data are possible, with long-term sedimentation rates of either 1.3 or 4 cm kyr(-1) However, both models implicate highly variable sedimentation rates of up to 10 cm kyr(-1), and abrupt changes in rock magnetic parameters might even indicate several hiatuses.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: On the basis of various lithological, mircopaleontological and isotopic proxy records covering the last 30,000 calendar years (cal kyr) the paleoenvironmental evolution of the deep and surface water circulation in the subarctic Nordic seas was reconstructed for a climate interval characterized by intensive ice-sheet growth and subsequent decay on the surrounding land masses. The data reveal considerable temporal changes in the type of thermohaline circulation. Open-water convection prevailed in the early record, providing moisture for the Fennoscandian-Barents ice sheets to grow until they reached the shelf break at ∼26 cal. kyr and started to deliver high amounts of ice-rafted debris (IRD) into the ocean via melting icebergs. Low epibenthic δ18O values and small-sized subpolar foraminifera observed after 26 cal. kyr may implicate that advection of Atlantic water into the Nordic seas occurred at the subsurface until 15 cal. kyr. Although modern-like surface and deep-water conditions first developed at ∼13.5 cal. kyr, thermohaline circulation remained unstable, switching between a subsurface and surface advection of Atlantic water until 10 cal. kyr when IRD deposition and major input of meltwater ceased. During this time, two depletions in epibenthic δ13C are recognized just before and after the Younger Dryas indicating a notable reduction in convectional processes. Despite an intermittent cooling at ∼8 cal. kyr, warmest surface conditions existed in the central Nordic seas between 10 and 6 cal. kyr. However, already after 7 cal. kyr the present day situation gradually evolved, verified by a strong water mass exchange with the Arctic Ocean and an intensifying deep convection as well as surface temperature decrease in the central Nordic seas. This process led to the development of the modern distribution of water masses and associated oceanographic fronts after 5 cal. kyr and, eventually, to today's steep east–west surface temperature gradient. The time discrepancy between intensive vertical convection after 5 cal. kyr but warmest surface temperatures already between 10 and 6 cal. kyr strongly implicates that widespread postglacial surface warming in the Nordic seas was not directly linked to the rates in deep-water formation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 410 (6827). pp. 427-428.
    Publication Date: 2017-02-28
    Description: To what extent was the Arctic Ocean glaciated in the past? Heavily, according to data, gathered by a submarine, which show considerable ice-scouring of topography in parts of the ocean basin
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-08-23
    Description: Planktic foraminifers Neogloboquadrina pachyderma (sin.) from 87 eastern and central Arctic Ocean surface sediment samples were analyzed for stable oxygen and carbon isotope composition. Additional results from 52 stations were taken from the literature. The lateral distribution of δ18O (Full-size image (〈1 K)) values in the Arctic Ocean reveals a pattern of roughly parallel, W-E stretching zones in the Eurasian Basin, each ∼0.5‰ wide on the δ18O scale. The low horizontal and vertical temperature variability in the Arctic halocline waters (0–100 m) suggests only little influence of temperature on the oxygen isotope distribution of N. pachyderma (sin.). The zone of maximum δ18O values of up to 3.8‰ is situated in the southern Nansen Basin and relates to the tongue of saline (〉 33%.) Atlantic waters entering the Arctic Ocean through the Fram Strait. δ18O values decrease both to the Barents Shelf and to the North Pole, in accordance with the decreasing salinities of the halocline waters. In the Nansen Basin, a strong N-S δ18O gradient is in contrast with a relatively low salinity change and suggests contributions from different freshwater sources, i.e. salinity reduction from sea ice meltwater in the south and from light isotope waters (meteoric precipitation and river-runoff) in the northern part of the basin. North of the Gakkel Ridge, δ18O and salinity gradients are in good accordance and suggest less influence of sea ice melting processes. The δ13C (Full-size image (〈1 K)) values of N. pachyderma (sin.) from Arctic Ocean surface sediment samples are generally high (0.75–0.95‰). Lower values in the southern Eurasian Basin appear to be related to the intrusion of Atlantic waters. The high δ13C values are evidence for well ventilated surface waters. Because the perennial Arctic sea ice cover largely prevents atmosphere-ocean gas exchange, ventilation on the seasonally open shelves must be of major importance. Lack of δ13C gradients along the main routes of the ice drift from the Siberian shelves to the Fram Strait suggests that primary production (i.e. CO2 consumption) does probably not change the CO2 budget of the Arctic Ocean significantly.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Schweizerbart
    In:  Zentralblatt für Geologie und Paläontologie / Teil 1 (7/8). pp. 897-812.
    Publication Date: 2019-04-05
    Description: Late Pleistocene climatic and paleoceanographic changes in the Norwegian-Greenland Sea are reflected in eleven long sediment cores by variations in calcium carbonate content and calcareous biogenic components versus coarse terrigenous ice-rafted detritus (IRD). High contents of IRD in glacial sequences are evidence for an enhanced melting of sea ice and icebergs. In contrast, high calcium carbonate contents indicate the inflow of warm Atlantic surface waters. The petrographic IRD composition in cores from the eastern and central Norwegian-Greenland Sea shows that the terrigenous material was predominantly derived from Scandinavia. Thus, it can be concluded that changes in the terrigenous input were caused by oscillations of the Late Pleistocene Scandinavian ice sheet. Changes in the extension of this ice sheet during the last 130 ky correlate well with our IRD data.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Geological Society of Sweden
    In:  [Invited talk] In: 26th Nordic Geological Winter Meeting, 06.01.-09.01.2004, Uppsala, Sweden . The 26th Nordic Geological Winter Meeting ; p. 125 .
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...