GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • OceanRep  (12)
  • 2000-2004  (5)
  • 1990-1994  (7)
  • 1
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 421 (6921). pp. 324-325.
    Publication Date: 2016-07-19
    Description: An excellent sediment record from the Arabian Sea traces recent patterns in the activity of the Asian monsoon. It reveals both variability in monsoon strength and links with climatic events elsewhere. The monsoon is the main determinant of environmental conditions over much of Asia, and so affects the most densely populated region on Earth. Differential heating of the north Indian Ocean and the northwest Pacific, and of the Asian land-mass, cause the seasonal reversal of monsoon winds. In summer, these winds blow northwards over the northern Indian Ocean, carrying huge amounts of moisture over the neighbouring land. The ensuing heavy rainfall can have devastating consequences for human life and livelihood. Conversely, agriculture in Asia depends on monsoon rains; and the seasonal upwelling of nutrient-laden subsurface waters, driven by monsoon winds, is essential to the success of coastal fisheries.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 372 (6507). pp. 621-622.
    Publication Date: 2016-07-15
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-07-15
    Description: Paired benthic Cd/Ca and δ13C records have been generated along core M35003 in the western tropical Atlantic. Decreased glacial water column dissolved cadmium (Cdw) and increased benthic δ13C indicate enhanced ventilation with nutrient-deplete intermediate waters, in line with similar inferences from other North Atlantic mid-depth records. An abrupt early deglacial δ13C collapse that is associated with a marked positive Cdw anomaly indicates a transient collapse of mid-depth ventilation from North Atlantic sources, conceivably in conjunction with the H1 meltwater anomaly. The Cdw record displays fine-scale fluctuations that mimic the Greenland Dansgaard/Oeschger (D/O) cycles and show decreased Cdw during stadials. This pattern is opposite to Cdw variations in a deep water record from Bermuda Rise that display increased Cdw concentrations during stadials. The divergent pattern between mid-depth and deep water Cdw records indicates millennial-scale switches between deep and shallow convection in the glacial North Atlantic, at the pace of the D/O climatic cycles. Several high-amplitude anomalies occur in the Cdw record that reach levels similar to those observed today in the North Pacific. While a substantial nutrient increase in the mid-depth North Atlantic cannot be ruled out during these events, changes of pore water chemistry and Cd/P fractionation during biological uptake offer alternative scenarios to explain the peak Cdw maxima.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 371 (6495). pp. 289-290.
    Publication Date: 2018-03-02
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-03-02
    Description: The Multitracers Experiment studied a transect of water column, sediment trap, and sediment data taken across the California Current to develop quantitative methods for hindcasting paleoproductivity. The experiment used three sediment trap moorings located 120 km, 270 km, and 630 km from shore at the Oregon/California border in North America. We report here about the sedimentation and burial of particulate organic carbon (Corg) and CaCO3. In order to observe how the integrated CaCO3 and Corg burial across the transect has changed since the last glacial maximum, we have correlated core from the three sites using time scales constrained by both radiocarbon and oxygen isotopes. By comparing surface sediments to a two-and-a-half year sediment trap record, we have also defined the modern preservation rates for many of the labile sedimentary materials. Our analysis of the Corg data indicates that significant amounts (20–40%) of the total Corg being buried today in surface sediments is terrestrial. At the last glacial maximum, the terrestrial Corg fraction within 300 km of the coast was about twice as large. Such large fluxes of terrestrial Corg obscure the marine Corg record, which can be interpreted as productivity. When we corrected for the terrestrial organic matter, we found that the mass accumulation rate of marine Corg roughly doubled from the glacial maximum to the present. Because preservation rates of organic carbon are high in the high sedimentation rate cores, corrections for degradation are straightforward and we can be confident that organic carbon rain rate (new productivity) also doubled. As confirmation, the highest burial fluxes of other biogenic components (opal and Ba) also occur in the Holocene. Productivity off Oregon has thus increased dramatically since the last glacial maximum. CaCO3 fluxes also changed radically through the deglaciation; however, they are linked not to CaCO3 production but rather to changes in deepwater carbonate chemistry between 18 Ka and now.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-03-02
    Description: Stable isotopes in benthic foraminifera from Pacific sediments are used to assess hypotheses of systematic shifts in the depth distribution of oceanic nutrients and carbon during the ice ages. The carbon isotope differences between ∼1400 and ∼3200 m depth in the eastern Pacific are consistently greater in glacial than interglacial maxima over the last ∼370 kyr. This phenomenon of “bottom heavy” glacial nutrient distributions, which Boyle proposed as a cause of Pleistocene CO2 change, occurs primarily in the 1/100 and 1/41 kyr−1 “Milankovitch” orbital frequency bands but appears to lack a coherent 1/23 kyr−1 band related to orbital precession. Averaged over oxygen-isotope stages, glacial δ13C gradients from ∼1400 to ∼3200 m depth are 0.1‰ greater than interglacial gradients. The range of extreme shifts is somewhat larger, 0.2 to 0.5‰. In both cases, these changes in Pacific δ13C distributions are much smaller than observed in shorter records from the North Atlantic. This may be too small to be a dominant cause of atmospheric pCO2 change, unless current models underestimate the sensitivity of pCO2 to nutrient redistributions. This dampening of Pacific relative to Atlantic δ13C depth gradient favors a North Atlantic origin of the phenomenon, although local variations of Pacific intermediate water masses can not be excluded at present.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-03-02
    Description: Carbonate deposition at two core sites in the subarctic Pacific (48°N, 133°W; 2.9 km and 3.7 km water depth) follows the standard Pacific carbonate cycles, with glacial values being increased over interglacial values. Benthicδ13C follows the global trend; that is, glacial values are more negative than interglacial values. Comparison with the benthicδ13C record of North Atlantic DSDP Site 552 (56°N, 23°W; 2.3 km water depth) shows the North Pacific records to be nearly in phase with and continuously more negative relative to the North Atlantic record. This suggests that concentrations of∑CO2(org) were permanently higher in the North Pacific than in the North Atlantic during the past 750,000 years conceivably supporting the hypothesis that there was no deep-water forming in the late Pleistocene North Pacific. Whereas one would expect that the North Pacific deep waters were continuously more corrosive to carbonates than deep waters in the North Atlantic, carbonate deposition at the deep North Pacific core sites is enhanced during glacial periods, and occasionally higher than at shallow North Atlantic Site 552 even though Site 552 was probably above lysocline-depth during most of the late Pleistocene. This apparent paradox can be resolved only by invoking an increase in alkalinity in the glacial North Pacific which would have increased the degree of carbonate ion saturation and thereby improved the state of carbonate preservation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-08-07
    Description: Records of benthic foraminiferal assemblage variations and benthic δ13C along 12 sediment cores from the western Iberian Margin, between 36° and 42°N at water depths from 820 to 3580 m, are used to monitor fluctuations of the Mediterranean Outflow Water (MOW) during the past 30 ka. The chronostratigraphy of the cores is based on planktonic δ18O records, 14C AMS-dating, and the recognition of Heinrich Events H1 through H4. Increased abundances of suspension feeding benthic foraminifers, denoted as ’Epibenthos Group‘, closely match areas where the recent MOW core layers impinge on the continental slope at 800 and 1300 m water depth, and near-bottom current velocities are enhanced. Elevated ‘Epibenthos Group’ abundances, increased benthic δ13C, and sedimentological evidence for winnowing and erosion are found in glacial sections up to the earliest Termination I in cores at water depths between 1600 and 2200 m off southern Portugal. The combined evidence reveals enhanced current activity at these depths due to a deep glacial MOW. The MOW advection at the Portuguese margin during the last Glacial was about 700 m deeper than today, conceivably forced by increased MOW density due to higher salinity and colder temperatures of Mediterranean waters. The deep MOW current gradually decreased in strength and shoaled to 1300 m water depth during the Termination and early Holocene. A shallow MOW core layer became active with the onset of Termination I at depths between 600 and 1000 m. Both the shallow and deep MOW current culminated during the Younger Dryas period. The present flow pattern with two MOW core layers centred at 800 and 1300 m water depth was established between 7.5 and 5.5 ka.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 356 (6372). pp. 744-746.
    Publication Date: 2018-03-02
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-03-02
    Description: Benthic (Uvigerina spp., Cibicidoides spp., Gyroidinoides spp.) and planktonic (N. pachyderma sinistral, G. bulloides) stable isotope records from three core sites in the central Gulf of Alaska are used to infer mixed-layer and deepwater properties of the late glacial Subarctic Pacific. Glacial-interglacial amplitudes of the planktonic δ18O records are 1.1–1.3‰, less than half the amplitude observed at core sites at similar latitudes in the North Atlantic; these data imply that a strong, negative δw anomaly existed in the glacial Subarctic mixed layer during the summer, which points to a much stronger low-salinity anomaly than exists today. If true, the upper water column in the North Pacific would have been statically more stable than today, thus suppressing convection even more efficiently. This scenario is further supported by vertical (i.e., planktic versus benthic) δ18O and δ13C gradients of 〉1‰, which suggest that a thermohaline link between Pacific deep waters and the Subarctic Pacific mixed layer did not exist during the late glacial. Epibenthic δ13C in the Subarctic Pacific is more negative than at tropical-subtropical Pacific sites but similar to that recorded at Southern Ocean sites, suggesting ventilation of the deep central Pacific from mid-latitude sources, e.g., from the Sea of Japan and Sea of Okhotsk. Still, convection to intermediate depths could have occurred in the Subarctic during the winter months when heat loss to the atmosphere, sea ice formation, and wind-driven upwelling of saline deep waters would have been most intense. This would be beyond the grasp of our planktonic records which only document mixed-layer temperature-salinity fields extant during the warmer seasons. Also we do not have benthic isotope records from true intermediate water depths of the Subarctic Pacific.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...