GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (1)
Document type
Language
Years
Year
  • 1
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Bioorganic chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (464 pages)
    Edition: 1st ed.
    ISBN: 9783527607112
    DDC: 547.05
    Language: English
    Note: Intro -- Bioorganometallics -- Preface -- Contents -- List of Contributors -- 1 A Novel Field of Research: Bioorganometallic Chemistry, Origins, and Founding Principles -- 1.1 Introduction -- 1.2 Organometallics and Therapy -- 1.2.1 The Founding Father -- 1.2.2 The First Significant Organometallic Drug -- 1.2.3 Arsenic Compounds after Ehrlich -- 1.2.4 Organometallic Mercury Compounds -- 1.2.5 The Current Re-evaluation: Considerations of Efficacy, Toxicity and Selectivity -- 1.3 Toxicology and the Environment -- 1.4 Bioanalytical Methods Based on Special Properties of Organometallic Complexes -- 1.5 Naturally-occurring Organometallics and Synthetic Models -- 1.6 Organometallic Chemistry and Aqueous Solvents -- 1.7 Conclusions -- References -- 2 Ruthenium Arene Anticancer Complexes -- 2.1 Introduction -- 2.2 Metal-based Anticancer Complexes -- 2.3 Chemistry of Ru Arenes -- 2.3.1 Synthesis -- 2.3.2 Structure -- 2.3.3 Chirality -- 2.4 Biological Activity -- 2.4.1 Antibacterial -- 2.4.2 Anticancer -- 2.4.3 Biodistribution and Metabolism -- 2.5 Mechanism of Action -- 2.5.1 Nucleobase and DNA Binding -- 2.5.2 Amino Acids and Proteins -- 2.5.3 Aquation -- 2.6 Conclusions -- References -- 3 Organometallics Targeted to Specific Biological Sites: the Development of New Therapies -- 3.1 Introduction -- 3.2 Overview of Previous Developments -- 3.3 Metal Complex SERMs (Selective Estrogen Receptor Modulators) -- 3.3.1 Inorganic Complexes of Platinum -- 3.3.2 Carborane Derivatives with Estrogenic Properties -- 3.3.3 Titanocene Dichloride Derivative of Tamoxifen -- 3.3.4 Cyclopentadienyl Rhenium Tricarbonyl Derivatives of Tamoxifen Derivatives -- 3.3.5 Ferrocene Tamoxifen Derivatives (Ferrocifens) -- 3.3.6 Ruthenocene Tamoxifen Derivatives -- 3.3.7 Conclusion for SERMs -- 3.4 The Alkyne Cobalt Carbonyl Complexes. , 3.5 Ferroquine, a New Weapon in the Fight Against Malaria: the Archetypical Bioorganometallic Approach -- 3.5.1 The Problem of Malaria -- 3.5.2 Ferroquine: a Bioorganometallic Approach -- 3.5.3 Conclusion for Ferroquine -- 3.6 Other Examples of Organometallics Complexes Tested for their Biological Activities -- 3.7 Conclusions -- References -- 4 Radiopharmaceuticals -- 4.1 What are Radiopharmaceuticals? -- 4.1.1 Radiopharmaceutical Drug Finding and Drug Development -- 4.1.2 Organometallic Complexes in Radiopharmaceutical Routines -- 4.2 Organometallic Aquo-ions -- 4.3 The Prototype [(99)Tc(OH(2))(3)(CO)(3)](+), Synthesis and Properties -- 4.3.1 Coordination Chemistry with [(99)Tc(OH(2))(3)(CO)(3)](+) -- 4.3.2 Organometallic Chemistry in Water with [(99)Tc(OH(2))(3)(CO)(3)](+) -- 4.4 Combining [(99)Tc(OH(2))(3)(CO)(3)](+) with Targeting Vectors -- 4.5 Perspectives -- References -- 5 Conjugates of Peptides and PNA with Organometallic Complexes: Syntheses and Applications -- 5.1 Introduction -- 5.2 Conjugates of Organometallics with Small Peptides -- 5.2.1 Organometallics as Templates for the Induction of Secondary Structural Elements in Peptides -- 5.2.1.1 Derivatives of 1,1'-Ferrocene Dicarboxylic Acid -- 5.2.1.2 Other Derivatives -- 5.2.2 Peptides as Ligands for Organometallics -- 5.3 Conjugates of Organometallics with Natural Peptides -- 5.3.1 Organometallic Derivatives of Enkephalins -- 5.3.2 Organometallic Derivatives of Peptide Hormones -- 5.3.2.1 Substance P and Neurokinin A -- 5.3.2.2 Angiotensin -- 5.3.2.3 Bradykinin -- 5.3.2.4 Gonadotropin-releasing Hormone -- 5.3.2.5 Secretin -- 5.3.3 Organometallic Derivatives of Other Peptides -- 5.3.3.1 Nuclear Localization Signal -- 5.3.3.2 Glutathione -- 5.3.3.3 Papain Inhibitors -- 5.3.3.4 Alamethicin -- 5.3.3.5 Others -- 5.3.4 Enzymatic Degradation of Organometallic Peptide Derivatives. , 5.4 Conjugates of Organometallics with PNA -- 5.4.1 Conjugates of PNA Monomers -- 5.4.2 Conjugates of PNA Oligomers -- 5.5 Applications -- 5.5.1 Organometallic Protecting Groups for Peptide Synthesis -- 5.5.1.1 Ferrocene-derived Protecting Groups -- 5.5.1.2 Aminocarbene-derived Protecting Groups -- 5.5.2 Peptide Synthesis -- 5.5.2.1 Template Synthesis of Peptides with Organometallics -- 5.5.2.2 Ugi Four-component Reaction -- 5.5.2.3 Ruthenium-mediated Coupling of Aryl Ethers for the Synthesis of Cyclic Peptides -- 5.5.3 Labeling of Peptides -- 5.5.3.1 HPLC with Electrochemical Detection (HPLC-ECD) -- 5.5.3.2 Radioactive Labels -- 5.5.4 Host-guest Chemistry and Biosensors -- References -- 6 Labeling of Proteins with Organometallic Complexes: Strategies and Applications -- 6.1 Introduction -- 6.2 Redox Probes -- 6.2.1 Amperometric Biosensors -- 6.2.1.1 Diffusional Mediators -- 6.2.1.2 Electron Relays -- 6.2.1.3 Electrical Wiring -- 6.2.2 HPLC and Immunoassays -- 6.2.3 Enzyme Structural Studies -- 6.2.4 Other applications -- 6.3 Luminescent Probes -- 6.3.1 Long-lived Probes -- 6.3.2 Electron Tunneling Studies -- 6.4 Heavy Metal Probes -- 6.4.1 Structural Analysis of Proteins by X-ray Crystallography -- 6.4.2 Cryo-electron Microscopy -- 6.4.3 Pharmacological Studies -- 6.5 Metallo-carbonyl Probes for Infrared Spectroscopy -- 6.6 Conclusions and Outlook -- References -- 7 Organometallic Bioprobes -- 7.1 Introduction -- 7.2 The Definition of the Terms Bioprobes and Molecular Bioprobes -- 7.3 Response Strategies for the Read-out of Information -- 7.4 Organometallic Components for Organometallic Bioprobes - Opening up the Advantages of IR-based Read-out Methods -- 7.5 Selectivity of Responses in IR-based Read-out Methods -- 7.5.1 Solvent-induced Effects -- 7.5.2 Responses to pH -- 7.5.3 Responses to Alkali Metal Ion Concentrations. , 7.5.4 Responses to π-Stacking Interactions between Organic Structures -- 7.6 Examples of Organometalcarbonyl Bioprobe Structures -- 7.7 Use of Organometallic Bioprobes with Proteins -- 7.8 Power of Genetics in the Design of Bioprobe Experiments -- 7.8.1 Remote and Local Response Capabilities -- 7.8.2 Functional and Dysfunctional Probes -- 7.8.3 Functional and Dysfunctional Receptors -- 7.8.4 Functional and Dysfunctional Probes and Receptors to Study the Induction of nod Gene Expression -- 7.9 Conclusions -- References -- 8 Organometallic Complexes as Tracers in Non-isotopic Immunoassay -- 8.1 Introduction -- 8.2 Principle of an Immunoassay -- 8.3 Obtaining Specific Antibodies -- 8.4 Synthesis of the Organometallic Tracers -- 8.4.1 Preparation of Tracers Labeled with Ferrocene -- 8.4.1.1 Preparation of a Tracer for Lidocaine -- 8.4.1.2 Preparation of a Tracer for Theophylline -- 8.4.1.3 Preparation of a Tracer for Triiodothyronine -- 8.4.1.4 Labeling of Antibodies (IgG) -- 8.4.2 Preparation of a Tracer for Diphenylhydantoin Labeled with a (Cyclopentadienyl)dicarbonyl Iron (Fp) Entity -- 8.4.3 Synthesis of Tracers Labeled with a Cymantrene (Cyclopentadienyl Manganese Tricarbonyl) Entity -- 8.4.3.1 Preparation of Tracers for Nortriptyline and Phenobarbital -- 8.4.3.2 Preparation of a Tracer for Chlortoluron -- 8.4.3.3 Preparation of a Tracer for Biotin -- 8.4.4 Synthesis of Diphenylhydantoin Bearing a Benchrotrene (Benzene chromium Tricarbonyl) Entity -- 8.4.5 Synthesis of Tracers Bearing an Alkyne Dicobalt Hexacarbonyl Moiety -- 8.4.5.1 Preparation of Tracers for Cortisol and Atrazine -- 8.4.5.2 Preparation of a Tracer for Carbamazepine -- 8.4.6 Synthesis of Cationic Tracers -- 8.4.6.1 Tracers Labeled with a Cobaltocenium Entity -- 8.4.6.2 Cationic Tracers Including a Ferrocene Entity. , 8.4.7 Synthesis of a Tracer Bearing a Rhenium Tricarbonyl Fragment -- 8.5 Examples of Mono- and Multi-metalloimmunoassays (MIA) -- 8.5.1 Metalloimmunoassay Using Atomic Absorption Spectroscopy -- 8.5.2 Detection by Fourier-transform Infrared Spectroscopy (Carbonyl Metalloimmuno Assay, CMIA) -- 8.5.2.1 Mono-immunoassays by CMIA -- 8.5.2.2 Multi-immunoassay by CMIA -- 8.5.2.3 New Developments in the CMIA Method -- 8.5.3 Electrochemical Detection -- 8.5.3.1 Homogeneous Ferrocene-mediated Amperometric Immunoassay -- 8.5.3.2 Homogeneous Electrochemical Immunoassay (Square Wave Voltammetry) -- 8.5.3.3 Electrochemical Flow Immunoassay System -- 8.5.4 Detection by Fluorescence Polarization (FP) -- 8.6 Use of Organometallic Complexes as Substrates or Co-substrates for Enzyme Immunoassay -- 8.6.1 Organometallic Complexes Used as Enzyme Substrates -- 8.6.2 Organometallic Complexes Used as Enzyme Co-substrates (Redox Mediators) -- 8.6.2.1 Flow Injection Immunoassay with Electrochemical Detection -- 8.6.2.2 Dual Enzyme Immunoassay with Amperometric Detection -- 8.6.2.3 Dual Enzyme Immunoassay Using Electrochemical Microscopy Detection -- 8.7 Conclusions -- References -- 9 Genosensors Based on Metal Complexes -- 9.1 Introduction -- 9.2 Metal Complexes as DNA Probes -- 9.2.1 Cationic Metal Complexes -- 9.2.2 Metal Complexes Conjugated with a DNA Fragment or DNA-binding Ligand -- 9.3 Electrochemical Analysis of the Interaction of Metal Complexes with dsDNA -- 9.4 Gene Detection Based on a Cationic Metal Complex or Metal Complex Conjugated with DNA-binding Ligand -- 9.5 Gene Detection Based on Ferrocenyl Oligonucleotides as a Metal Complex Conjugated with DNA Fragments -- 9.6 Conclusions -- References -- 10 Supramolecular Host Recognition Processes with Biological Compounds, Organometallic Pharmaceuticals, and Alkali-metal Ions as Guests -- 10.1 Introduction. , 10.2 Host 1.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...