GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Quarterly Journal of the Royal Meteorological Society, Wiley, Vol. 135, No. 641 ( 2009-04), p. 1003-1019
    Type of Medium: Online Resource
    ISSN: 0035-9009
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2009
    detail.hit.zdb_id: 3142-2
    detail.hit.zdb_id: 2089168-4
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Quarterly Journal of the Royal Meteorological Society, Wiley, Vol. 135, No. 641 ( 2009-04), p. 979-1002
    Abstract: Results are presented from an intercomparison of single‐column and cloud‐resolving model simulations of a cold‐air outbreak mixed‐phase stratocumulus cloud observed during the Atmospheric Radiation Measurement (ARM) programme's Mixed‐Phase Arctic Cloud Experiment. The observed cloud occurred in a well‐mixed boundary layer with a cloud‐top temperature of − 15 °C. The average liquid water path of around 160 g m −2 was about two‐thirds of the adiabatic value and far greater than the average mass of ice which when integrated from the surface to cloud top was around 15 g m −2 . Simulations of 17 single‐column models (SCMs) and 9 cloud‐resolving models (CRMs) are compared. While the simulated ice water path is generally consistent with observed values, the median SCM and CRM liquid water path is a factor‐of‐three smaller than observed. Results from a sensitivity study in which models removed ice microphysics suggest that in many models the interaction between liquid and ice‐phase microphysics is responsible for the large model underestimate of liquid water path. Despite this underestimate, the simulated liquid and ice water paths of several models are consistent with observed values. Furthermore, models with more sophisticated microphysics simulate liquid and ice water paths that are in better agreement with the observed values, although considerable scatter exists. Although no single factor guarantees a good simulation, these results emphasize the need for improvement in the model representation of mixed‐phase microphysics. Copyright © 2009 Royal Meteorological Society
    Type of Medium: Online Resource
    ISSN: 0035-9009 , 1477-870X
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2009
    detail.hit.zdb_id: 3142-2
    detail.hit.zdb_id: 2089168-4
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 88, No. 2 ( 2007-02), p. 191-204
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2007
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Geophysical Research, American Geophysical Union (AGU), Vol. 112, No. D21 ( 2007-11-06)
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2007
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2008
    In:  Bulletin of the American Meteorological Society Vol. 89, No. 10 ( 2008-10), p. 1549-1562
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 89, No. 10 ( 2008-10), p. 1549-1562
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2008
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Meteorological Society ; 2008
    In:  Journal of Applied Meteorology and Climatology Vol. 47, No. 9 ( 2008-09-01), p. 2405-2422
    In: Journal of Applied Meteorology and Climatology, American Meteorological Society, Vol. 47, No. 9 ( 2008-09-01), p. 2405-2422
    Abstract: Downwelling radiation in six regional models from the Arctic Regional Climate Model Intercomparison (ARCMIP) project is systematically biased negative in comparison with observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment, although the correlations with observations are relatively good. In this paper, links between model errors and the representation of clouds in these models are investigated. Although some modeled cloud properties, such as the cloud water paths, are reasonable in a climatological sense, the temporal correlation of model cloud properties with observations is poor. The vertical distribution of cloud water is distinctly different among the different models; some common features also appear. Most models underestimate the presence of high clouds, and, although the observed preference for low clouds in the Arctic is present in most of the models, the modeled low clouds are too thin and are displaced downward. Practically all models show a preference to locate the lowest cloud base at the lowest model grid point. In some models this happens also to be where the observations show the highest occurrence of the lowest cloud base; it is not possible to determine if this result is just a coincidence. Different factors contribute to model surface radiation errors. For longwave radiation in summer, a negative bias is present both for cloudy and clear conditions, and intermodel differences are smaller when clouds are present. There is a clear relationship between errors in cloud-base temperature and radiation errors. In winter, in contrast, clear-sky cases are modeled reasonably well, but cloudy cases show a very large intermodel scatter with a significant bias in all models. This bias likely results from a complete failure in all of the models to retain liquid water in cold winter clouds. All models overestimate the cloud attenuation of summer solar radiation for thin and intermediate clouds, and some models maintain this behavior also for thick clouds.
    Type of Medium: Online Resource
    ISSN: 1558-8432 , 1558-8424
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2008
    detail.hit.zdb_id: 2227779-1
    detail.hit.zdb_id: 2227759-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Meteorological Society ; 2008
    In:  Journal of Atmospheric and Oceanic Technology Vol. 25, No. 4 ( 2008-04-01), p. 547-557
    In: Journal of Atmospheric and Oceanic Technology, American Meteorological Society, Vol. 25, No. 4 ( 2008-04-01), p. 547-557
    Abstract: A method for deriving vertical air motions from cloud radar Doppler spectrum measurements is introduced. The method is applicable to cloud volumes containing small particles, in this case liquid droplets, which are assumed to trace vertical air motions because of their limited size. The presence of liquid droplets is confirmed using multiple ground-based remote sensors. Corrections for Doppler spectrum broadening due to turbulence, wind shear, and radar beamwidth are applied. As a result of the turbulence broadening correction, the turbulent dissipation rate can also be estimated. This retrieval is demonstrated using measurements from the Department of Energy (DOE) Atmospheric Radiation Measurement Program’s (ARM) site in Barrow, Alaska, during the Mixed-Phase Arctic Cloud Experiment (MPACE) of autumn 2004. Comparisons of the retrievals with measurements by research aircraft near Barrow indicate that, on the whole, the retrievals perform well. A small bias in vertical velocity between the retrievals and aircraft measurements is found, based on a statistical comparison of four cases comprising nearly 6 h of data. Turbulent dissipation rate comparisons suggest that the radar-retrieved vertical velocity might be slightly underestimated because of an underestimate of the turbulence broadening correction. However, large uncertainties in aircraft vertical velocity measurements likely impact the comparison.
    Type of Medium: Online Resource
    ISSN: 1520-0426 , 0739-0572
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2008
    detail.hit.zdb_id: 2021720-1
    detail.hit.zdb_id: 48441-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Meteorological Society ; 2006
    In:  Journal of Atmospheric and Oceanic Technology Vol. 23, No. 11 ( 2006-11-01), p. 1478-1491
    In: Journal of Atmospheric and Oceanic Technology, American Meteorological Society, Vol. 23, No. 11 ( 2006-11-01), p. 1478-1491
    Abstract: An attenuation-based method to retrieve vertical profiles of rainfall rate from vertically pointing Ka-band radar measurements has been refined and adjusted for use with the U.S. Department of Energy’s cloud radars deployed at multiple Atmospheric Radiation Program (ARM) test bed sites. This method takes advantage of the linear relationship between the rainfall rate and the attenuation coefficient, and can account for a priori information about the vertical profile of nonattenuated reflectivity. The retrieval method is applied to a wide variety of rainfall events observed at different ARM sites ranging from stratiform events with low-to-moderate rainfall rates (∼5 mm h−1) to heavy convective rains with rainfall rates approaching 100 mm h−1. The Ka-band attenuation-based retrieval results expressed in both instantaneous rainfall rates and in rainfall accumulations are compared to available surface data and measurements of a scanning C-band precipitation polarimetric radar located near the Darwin, Australia, ARM test bed site. The Ka-band retrievals are found to be in good agreement with the C-band radar estimates, which are based both on conventional radar reflectivity approaches and on polarimetric differential phase shift measurements. Typically, the C-band–Ka-band radar estimate differences are within the expected retrieval uncertainties. The magnitude of the Ka-band rainfall-rate estimate error depends on the retrieval resolution, rain intensity, and uncertainties in the profiles of nonattenuated reflectivity. It is shown that reasonable retrieval accuracies (∼15%–40%) can be achieved for a large dynamic range of observed rainfall rates (4–100 mm h−1) and the effective vertical resolution of about 1 km. The potential enhancements of the Ka-band attenuation-based method by including a priori information on vertical profiles of nonattenuated reflectivity and increasing the height range of the retrievals by using Ka-band polarization measurements are also discussed. The addition of the precipitation products to the suite of ARM hydrometeor retrievals can enhance the overall characterization of the vertical atmospheric column.
    Type of Medium: Online Resource
    ISSN: 1520-0426 , 0739-0572
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2006
    detail.hit.zdb_id: 2021720-1
    detail.hit.zdb_id: 48441-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2007
    In:  Geophysical Research Letters Vol. 34, No. 22 ( 2007-11-22)
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 34, No. 22 ( 2007-11-22)
    Type of Medium: Online Resource
    ISSN: 0094-8276
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2007
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Meteorological Society ; 2006
    In:  Journal of the Atmospheric Sciences Vol. 63, No. 2 ( 2006-02-01), p. 697-711
    In: Journal of the Atmospheric Sciences, American Meteorological Society, Vol. 63, No. 2 ( 2006-02-01), p. 697-711
    Abstract: Arctic mixed-phase cloud macro- and microphysical properties are derived from a year of radar, lidar, microwave radiometer, and radiosonde observations made as part of the Surface Heat Budget of the Arctic Ocean (SHEBA) Program in the Beaufort Sea in 1997–98. Mixed-phase clouds occurred 41% of the time and were most frequent in the spring and fall transition seasons. These clouds often consisted of a shallow, cloud-top liquid layer from which ice particles formed and fell, although deep, multilayered mixed-phase cloud scenes were also observed. On average, individual cloud layers persisted for 12 h, while some mixed-phase cloud systems lasted for many days. Ninety percent of the observed mixed-phase clouds were 0.5–3 km thick, had a cloud base of 0–2 km, and resided at a temperature of −25° to −5°C. Under the assumption that the relatively large ice crystals dominate the radar signal, ice properties were retrieved from these clouds using radar reflectivity measurements. The annual average ice particle mean diameter, ice water content, and ice water path were 93 μm, 0.027 g m−3, and 42 g m−2, respectively. These values are all larger than those found in single-phase ice clouds at SHEBA. Vertically resolved cloud liquid properties were not retrieved; however, the annual average, microwave radiometer–derived liquid water path (LWP) in mixed-phase clouds was 61 g m−2. This value is larger than the average LWP observed in single-phase liquid clouds because the liquid water layers in the mixed-phase clouds tended to be thicker than those in all-liquid clouds. Although mixed-phase clouds were observed down to temperatures of about −40°C, the liquid fraction (ratio of LWP to total condensed water path) increased on average from zero at −24°C to one at −14°C. The observations show a range of ∼25°C at any given liquid fraction and a phase transition relationship that may change moderately with season.
    Type of Medium: Online Resource
    ISSN: 1520-0469 , 0022-4928
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2006
    detail.hit.zdb_id: 218351-1
    detail.hit.zdb_id: 2025890-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...