GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 108, No. 11 ( 2006-11-16), p. 3409-3409
    Abstract: Interaction between multiple myeloma (MM) cells and the bone marrow (BM) microenvironment plays a critical role in promoting MM cell growth, survival, migration and development of drug resistance. This interaction within the bone marrow milieu is unique and its understanding is important in evaluating effects of novel agents in vitro and in vivo. We here describe a novel murine model that allows us to study the expression changes in vivo in MM cells within the human BM milieu. In this model, the green fluorescent protein (INA-6 GFP+) transduced IL-6-dependent human MM cell line, INA-6, was injected in human bone chip implanted into SCID mice. At different time points the bone chip was retrieved, cells flushed out and GFP+ MM cells were purified by CD138 MACS microbeads. Similar isolation process was used on INA-6 GFP+ cells cultured in vitro and used as control. Total RNA was isolated from these cells and gene expression profile analyzed using the HG-U133 array chip (Affymetrix) and DChip analyzer program. We have identified significant changes in expression of several genes following in vivo interaction between INA-6 and the BM microenvironment. Specifically, we observed up-regulation of genes associated with cytokines (IL-4, IL-8, IGFB 2–5) and chemokines (CCL2, 5, 6, 18, 24, CCR1, 2, 4), implicated in cell-cell signalling. Moreover genes implicated in DNA transcription (V-Fos, V-Jun, V-kit), adhesion (Integrin alpha 2b, 7, cadherin 1 and 11) and cell growth (CDC14, Cyclin G2, ADRA1A) were also up-regulated and genes involved in apoptosis and cell death (p-57, BCL2, TNF1a) were down-regulated. Using the Ingenuity Pathway Analysis the most relevant pathways modulated by the in vivo interaction between MM cells and BMSCs were IL-6, IGF1, TGF-beta and ERK/MAPK-mediated pathways as well as cell-cycle regulation and chemokine signalling. These results are consistent with previously observed in vitro cell signalling studies. Taken together these results highlight the ability of BM microenvironment to modulate the gene expression profile of the MM cells and our ability to in vivo monitor the changes. This model thus provides us with an ability to study in vivo effects of novel agents on expression profile of MM cells in BM milieu, to pre-clinically characterize their activity.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2006
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 106, No. 11 ( 2005-11-16), p. 5183-5183
    Abstract: Invariant NKT (iNKT) cells are characterized by the expression of invariant T-cell receptor encoded by Vα24-JαQ and NK receptors. iNKT cells recognize glycolipid antigens with CD1d restriction, and play an important immunoregulatory role in innate immunity. Through the production of IFN-γ, iNKT cells can contribute to immune surveillance in malignancy. However, in progressive multiple myeloma (MM), as well as in other advanced cancers, iNKT cells have a marked deficiency of ligand-dependent IFN-γ production. Thus, the development of effective iNKT cells is a novel strategy for the immunotherapy of MM. In this study, we report the establishment of highly purified primary iNKT cell lines from healthy donors and MM patients. iNKT cells derived from peripheral blood or bone marrow mononuclear cells were enriched with anti-TCRVα 24 mAb or anti-6B11 mAb and further expanded by several rounds of stimulation with α-GalCer-loaded dendritic cells. Phenotype analysis confirmed 95% purity in expanded iNKT cell lines. No significant phenotypic difference was observed in iNKT cells between healthy donors and MM patients. Most of iNKT cell lines are CD4+ cell lines (CD4+ cells & gt; 90%, with less than 2% were CD8+ cells). Majority of iNKT cells expressed CD161 and CD28, whereas CD56 expression was at very low level. Following anti-CD3 or α-GalCer-loaded dendritic cells stimulation, iNKT cells showed strong proliferative activity as measured by 3H-TdR incorporation assay. These cells expressed high level of CD25 and produced high levels of IFN-γ as well as IL-2 as measured by ELISA assay. These results provide the preclinical feasibility of producing large volume of highly-enriched functional iNKT cells from myeloma patients and rationale to clinically evaluate the efficacy of adoptive transfer of iNKT cells in MM. Based on these results a clinical study is under development.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2005
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 110, No. 11 ( 2007-11-16), p. 672-672
    Abstract: We have previously demonstrated that a consistent feature of malignant plasma cells of multiple myeloma (MM) is the aberrant expression of genes important in patterning and development, such as members of Hedghehog (Hh) pathway (FE Davies et al, Blood 2003). These findings suggest that overexpression of genes of this pathway, already involved in many solid tumors and recently implicated in maintaining a proposed MM stem cell compartment (CD Peacock et al, PNAS 2007), might be one of the mechanism through which Hh-signaling contributes to tumorigenesis in MM. Therefore, several small molecule modulators of Hh-pathway, which work as agonists and antagonists, are currently under development. We evaluated, by microarray analysis, the expression of Hh pathway genes in MM cell lines and primary MM cells vs. plasma cells from healthy donors. We found that primary MM cells overexpress Sonic (Shh), Smoothened (Smo), Patched (Ptc), Gli-1 and Gli-3 (relative expression ratios ranging from +1.8 to +5.0). Overexpression of Patched was also observed in most of the MM cell lines analyzed (+5.0 ratio in 5 of 6 MM cell lines). Additionally, we confirmed the expression of Shh and of Gli-1, by flow cytometry and western blotting respectively, in a large panel of MM cell lines. These data suggest an activation of the Hh-pathway in MM that, in some cell lines, is Shh-dependent. Therefore, we investigated the therapeutic potential of Hh-inhibitors in MM. We assayed the cell viability and proliferation, by MTT and Thymidine uptake respectively, in 8 MM cell lines after 72 hours of treatment with the small molecule Smo-inhibitor CUR-0199691 (Genentech). We observed a reduction in MM cell viability, with IC50 values ranging between 4.5–9.5 μM in these 8 cell lines and an inhibition of MM cell proliferation with IC50 values ranging between 0.5 and 2.5μM in the same cell lines. MM cell sensitivity to this compound appears to be related to the level of expression of Gli-1, since the cell lines with lower level of expression of Gli-1 were more sensitive. The treatment of these MM cell lines with Cyclopamine, another Hh-inhibitor, showed an IC50 between 7.5μM and 10μM after at least 96 hours of treatment in 4 of the MM cell lines tested. CUR-0199691 is also active in primary MM cells, triggering inhibition of proliferation by 50% at 5μM after only 24h of treatment, while cyclopamine reduces MM cell proliferation (normalized to the effect of tomatidine, its inactive analog) by 30% at 20μM after a 48 hour treatment. Annexin V-PI staining of Hh inhibitor-treated KMS11 cells, which are one of the most sensitive MM cell lines, showed induction of apoptosis, evidenced by detection of 12 and 15% of MM cells being Annexin V+/PI- after 48h and 72h respectively with 5μM of CUR-0199691. These results, taken together, show that the Hh-pathway is fuctionally active in MM and that the novel Hh pathway inhibitor CUR-0199691 is 4–5 times more effective than cyclopamine in both MM cell lines and primary MM cells. These studies provide the framework for further preclinical evaluation of CUR-0199691 in MM models towards possible future clinical trials.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2007
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 114, No. 15 ( 2009-10-08), p. 3276-3284
    Abstract: The transformation from monoclonal gammopathy of undetermined significance (MGUS) to multiple myeloma (MM) is thought to be associated with changes in immune processes. We have therefore used serologic analysis of recombinant cDNA expression library to screen the sera of MGUS patients to identify tumor-associated antigens. A total of 10 antigens were identified, with specific antibody responses in MGUS. Responses appeared to be directed against intracellular proteins involved in cellular functions, such as apoptosis (SON, IFT57/HIPPI), DNA and RNA binding (ZNF292, GPATCH4), signal transduction regulators (AKAP11), transcriptional corepressor (IRF2BP2), developmental proteins (OFD1), and proteins of the ubiquitin-proteasome pathway (PSMC1). Importantly, the gene responsible for the oral-facial-digital type I syndrome (OFD1) had response in 6 of 29 (20.6%) MGUS patients but 0 of 11 newly diagnosed MM patients. Interestingly, 3 of 11 (27.2%) MM patients after autologous stem cell transplantations showed responses to OFD1. We have confirmed T-cell responses against OFD1 in MGUS and observed down-regulation of GLI1/PTCH1 and p-β-catenin after OFD1 knock-down with specific siRNA, suggesting its functional role in the regulation of Hh and Wnt pathways. These findings demonstrate OFD1 as an important immune target and highlight its possible role in signal transduction and tumorigenesis in MGUS and MM.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2009
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 106, No. 11 ( 2005-11-16), p. 3465-3465
    Abstract: Multiple myeloma (MM) is characterized by the accumulation of mature plasma cells in the bone marrow. Despite progress in treatment, the disease still remains incurable, therefore novel therapeutic approaches are required to achieve better treatment. Development of peptide-based immunotherapies against specific tumor-associated antigens offers an attractive approach that may lead to tumor-targeted cellular therapy in MM patients. CD138 (Syndecan-1) is an unique target expressed on the surface of MM cells and normal plasma cells with very limited other distribution or expression. CD138 has been reported to play an important role in myeloma cell survival and, infact, is used to purify MM cells in laboratory experiments. The purpose of this study was to develop immunogenic peptides derived from CD138 antigen for the induction of antigen-specific cytotoxic T lymphocytes (CTLs) against MM. We have identified an immunogeneic HLA-A2-specific CD138 peptide that is capable of inducing MM specific-CTLs. To induce the specific CTLs, HLA-A2-positive normal human T lymphocytes were stimulated with autologous dendritic cells or T2 cells pulsed with the CD138 peptide. The generated CTLs showed a distinct phenotype consisting of 67% of CD69+/CD45RO+ and 1% of CD45RA+/CCR7+ T cells, characteristic of effector memory cell population. A significant (p 〈 0.05) increase in T cell proliferation and IFN-g secretion were observed by the CTLs following restimulation with HLA-A2+/CD138+ MM cells. The CTLs displayed HLA-A2-restricted CD138-specific cytotoxic activity against MM cell, demonstrated as 76% and 86% cytotoxicity at Effector:Target ratios of 20:1 or 60:1, respectively. The MM cell-specific cytotoxicity was confirmed in “cold” target inhibition assays using HLA-A2.1+/CD138+ MM cells as “cold” inhibitor, demonstrated 25% and 39% reduction in cytotoxicity when incubated with cold inhibitors at E:T ratios of 20:1 or 60:1, respectively. A distinct CD138 peptide-specific tetramer+/CD8+ population was also confirmed. Taken together, these data demonstrate the efficacy of the immunogenic CD138 peptide in inducing a cellular immune response in MM for future clinical application.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2005
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 15, No. 23 ( 2009-12-01), p. 7144-7152
    Abstract: Purpose: We investigated the in vitro and in vivo anti-multiple myeloma activity of monoclonal antibody (mAb) 1339, a high-affinity fully humanized anti-interleukin 6 mAb (immunoglobulin G1), alone and in combination with conventional and novel anti-multiple myeloma agents, as well as its effect on bone turnover. Experimental Design: We examined the growth inhibitory effect of 1339 against multiple myeloma cell lines in the absence and in the presence of bone marrow stromal cells, alone or in combination with dexamethasone, bortezomib, perifosine, and Revlimid. Using the severe combined immunodeficient (SCID)–hu murine model of multiple myeloma, we also examined the effect of 1339 on multiple myeloma cell growth and multiple myeloma bone disease. Results: mAb 1339 significantly inhibited growth of multiple myeloma cell in the presence of bone marrow stromal cell in vitro, associated with inhibition of phosphorylation of signal transducer and activator of transcription 3, extracellular signal-regulated kinase 1/2, and Akt. In addition, mAb 1339 enhanced cytotoxicity induced by dexamethasone, as well as bortezomib, lenalidomide, and perifosine, in a synergistic fashion. Importantly mAb 1339 significantly enhanced growth inhibitory effects of dexamethasone in vivo in SCID-hu mouse model of multiple myeloma. mAb 1339 treatment also resulted in inhibition of osteoclastogenesis in vitro and bone remodeling in SCID-hu model. Conclusions: Our data confirm in vitro and in vivo anti-multiple myeloma activity of, as well as inhibition of bone turnover by, fully humanized mAb 1339, as a single agent and in combination with conventional and novel agents, providing a rationale for its clinical evaluation in multiple myeloma. (Clin Cancer Res 2009;15(23):7144–52)
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2009
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 108, No. 11 ( 2006-11-16), p. 5104-5104
    Abstract: Invariant NKT (iNKT) cells are important immunoregulatory cells that recognize glycolipid antigens with CD1d restriction and contribute to antitumor immune responses through the production of IFN-γ and IL-2. However, in progressive multiple myeloma (MM), the iNKT cell population is decreased along with its capacity to produce IFN-γ. Thus, a novel strategy for the immunotherapy of MM entails the enhancement of iNKT cell functions. In this study, we established iNKT cell lines from MM patients via enrichment with Vα24+ and subsequently with Vβ11+ cells, followed by several rounds of stimulation with α-GalCer-pulsed DCs. These techniques resulted in highly purified iNKT cell lines ( & gt;97%). To evaluate potential in vivo interaction between iNKT cells and myeloma cells, we evaluated the CD1d expression on primary myeloma cells as well as MM cell lines. Gene expression profiling revealed compared to normal plasma cells, majority of primary MM cells (11 out of 15) expressed higher levels of CD1d; in contrast, all 6 MM cell lines tested had no expression. Flow cytometric analysis further confirmed the expression of CD1d on primary MM cells and lack of its expression on 12 different MM cell lines. A CD1d-transfected MM1S cell line (MM1S-CD1d) was therefore established for the functional study. To determine whether CD1d-expressing primary MM cells have the antigen presenting capacity, iNKT cell lines from healthy donors (n=2) and MM patients (n=2) were cocultured with 5 cases of CD1d positive primary MM cells with or without α-GalCer. Monitored by the CD25 expression, we demonstrated primary MM cells presented α-GalCer and also endogenous antigen(s) to activate iNKT cells. We have further evaluated the functional profile of expanded iNKT cell lines from MM patients (n=5). Upon stimulation with α-GalCer-pulsed MM.1S-CD1d cells, iNKT cells produced high levels of Th1-type cytokines (IFN-γ and IL-2) compared to low level Th2-type cytokine production (IL-4). Our results thus demonstrate that iNKT cell lines from MM patients were functionally restored by expansion with α-GalCer-pulsed DCs in vitro. To further augment iNKT cells function, we evaluated effects of lenalidomide on iNKT cell lines, an immunomodulatory drug which has been demonstrated to enhance T cell costimulation and NK cell activity. Lenalidomide did not directly stimulate iNKT cells in the presence or absence of α-GalCel. Importantly, upon CD1d-restricted activation by α-GalCer-loaded MM1S-CD1d cells, lenalidomide significantly enhanced the Th1-type immune responses of iNKT cell lines from both healthy donors and MM patients. Compared to those of controls, a significant increase of IFN- γ (healthy donor, p & lt; 0.001, n=7; MM patients, p & lt;0.05, n=3) and IL-2 (MM patients, p & lt;0.0015, n=3) occurred. Meanwhile, lenalidomide had no significant effect on the production of IL-4 by iNKT cell lines (healthy donor, p & gt;0.05, n=7; MM patients, p & gt;0.05, n=3). Taken together, our results provide preclinical feasibility and support a rationale to evaluate efficacy of adoptive transfer of iNKT cells in MM. Moreover, it provides a clinical basis for use of lenalidomide to enhance iNKT cell mediated immunotherapy in myeloma.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2006
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 108, No. 11 ( 2006-11-16), p. 655-655
    Abstract: Monoclonal gammopathy of undetermined significance (MGUS) is an indolent condition that may be modulated by various factors including immunologic responses directed at the monoclonal cells. Several evidences have supported the idea that the immune system, in patients with MGUS, may play a role in controlling the progression to myeloma (MM) and the identification of antigenic targets could open the way for future immunotherapeutic approaches to delay or prevent such progression. We have screened a cDNA expression library from primary myeloma cells and used Serological Analysis of Recombinant cDNA Expression Library (SEREX) to identify antigens that are recognized by antibodies in MGUS patients and therefore may be targets of the immune system and possibly involved in the pathogenesis of this disease. We used high dilution (1:500) serum from 3 MGUS patients with stable disease for 1 to 4 years and identified a panel of 11 novel antigenic targets eliciting an immune response. Antibody response appeared to be directed against intracellular proteins involved in apoptosis (SON, Hip1), DNA and RNA binding proteins (KIAA0530, GPATC4), signal transduction regulators (AKAP11), developmental proteins (OFD1), transcriptional co-repressors (IRF2BP2), proteins of the ubiquitin-proteosome pathways (PSMC1). We have further analyzed frequency of antibody response against these antigens in additional 26 MGUS sera, 10 newly diagnosed and 10 MM patients in remission after auto-transplant and 25 normal donors. We have observed antibody response against OFD1 (20.6 %); KIAA0530 (10.3%); AKAP11 (10.3%); and GPATC4 (6.8%) in patients with MGUS. Interestingly, 1/10 patients with newly diagnosed MM (10%) and 3/10 (30%) patients in remission after auto-transplant had an antibody response against OFD1 with evidence of increase in antibody titer in one patient after transplant suggesting its importance as a target. No significant antibody responses were observed against any of these antigens in the sera of 25 health donors. We have further focused our studies on OFD1, a protein developmentally expressed in adult human organs that colocalizes with γ-tubulin in the centrosome and has LIS1 homology motifs suggesting its contribution in regulation of microtubule dynamics. We have confirmed, by western blot analysis and RT-PCR, the expression of OFD1 in MM cell lines and lack of its expression in normal cells including normal BMSC. In addition some myeloma cell lines express different spliced variant of this protein. Specific T cell responses directed at OFD1 and its role in cell signaling are under investigation. These data open the possibility to identify target antigens that are important in the disease process of MGUS and may allow us to design future vaccines and immunotherapeutic approaches targeting these antigens in MGUS as well as in MM.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2006
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 178, No. 12 ( 2007-06-15), p. 7730-7737
    Abstract: The 90-kDa heat shock protein (Hsp90) plays an important role in conformational regulation of cellular proteins and thereby cellular signaling and function. As Hsp90 is considered a key component of immune function and its inhibition has become an important target for cancer therapy, we here evaluated the role of Hsp90 in human dendritic cell (DC) phenotype and function. Hsp90 inhibition significantly decreased cell surface expression of costimulatory (CD40, CD80, CD86), maturation (CD83), and MHC (HLA-A, B, C and HLA-DP, DQ, DR) markers in immature DC and mature DC and was associated with down-regulation of both RNA and intracellular protein expression. Importantly, Hsp90 inhibition significantly inhibited DC function. It decreased Ag uptake, processing, and presentation by immature DC, leading to reduced T cell proliferation in response to tetanus toxoid as a recall Ag. It also decreased the ability of mature DC to present Ag to T cells and secrete IL-12 as well as induce IFN-γ secretion by allogeneic T cells. These data therefore demonstrate that Hsp90-mediated protein folding is required for DC function and, conversely, Hsp90 inhibition disrupts the DC function of significant relevance in the setting of clinical trials evaluating novel Hsp90 inhibitor therapy in cancer.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2007
    detail.hit.zdb_id: 1475085-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Rockefeller University Press ; 2008
    In:  The Journal of Experimental Medicine Vol. 205, No. 13 ( 2008-12-22), p. 3145-3158
    In: The Journal of Experimental Medicine, Rockefeller University Press, Vol. 205, No. 13 ( 2008-12-22), p. 3145-3158
    Abstract: Interleukin (IL) 1α produced by human endothelial cells (ECs), in response to tumor necrosis factor (TNF) or to co-culture with allogeneic T cells in a TNF-dependent manner, can augment the release of cytokines from alloreactive memory T cells in vitro. In a human–mouse chimeric model of artery allograft rejection, ECs lining the transplanted human arteries express IL-1α, and blocking IL-1 reduces the extent of human T cell infiltration into the artery intima and selectively inhibits IL-17 production by infiltrating T cells. In human skin grafts implanted on immunodeficient mice, administration of IL-17 is sufficient to induce mild inflammation. In cultured cells, IL-17 acts preferentially on vascular smooth muscle cells rather than ECs to enhance production of proinflammatory mediators, including IL-6, CXCL8, and CCL20. Neutralization of IL-17 does not reduce T cell infiltration into allogeneic human artery grafts, but markedly reduces IL-6, CXCL8, and CCL20 expression and selectively inhibits CCR6+ T cell accumulation in rejecting arteries. We conclude that graft-derived IL-1 can promote T cell intimal recruitment and IL-17 production during human artery allograft rejection, and suggest that targeting IL-1 in the perioperative transplant period may modulate host alloreactivity.
    Type of Medium: Online Resource
    ISSN: 1540-9538 , 0022-1007
    RVK:
    Language: English
    Publisher: Rockefeller University Press
    Publication Date: 2008
    detail.hit.zdb_id: 1477240-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...