GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2006
    In:  Journal of Atmospheric and Oceanic Technology Vol. 23, No. 11 ( 2006-11-01), p. 1573-1582
    In: Journal of Atmospheric and Oceanic Technology, American Meteorological Society, Vol. 23, No. 11 ( 2006-11-01), p. 1573-1582
    Abstract: A near-continuous series of global retrievals of sea surface temperature (SST) has been made from the Along-Track Scanning Radiometer (ATSR) series of instruments from 1991 to 2005. To analyze possible long-term trends in the global or regional SST throughout the period daily anomalies are computed using a 1961–90 daily climatology, averaged into global monthly means, and plotted as a global time series. To evaluate any biases in these anomalies they are compared with other satellite SST datasets that have been computed and compared over the same time period. Global infrared satellite SST data have been received from the Advanced Very High Resolution Radiometer (AVHRR) series, microwave SST data from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), and global microwave SST data from the Advanced Microwave Sounding Radiometer (AMSR)-E on Aqua. Additionally, the anomalies have also been compared with the Hadley Centre Global Sea Ice Coverage and Sea Surface Temperature (HadISST1) anomalies. HadISST1 is a globally complete 1° SST analysis compiled from in situ and bias-corrected AVHRR SSTs at the Met Office (UK). The results of the study show the high accuracy of the Advanced Along Track Scanning Radiometer (AATSR) SSTs, but there are concerns with the NOAA-14 AVHRR data (1996–2000) being biased cold, especially in the Northern Hemisphere, and the AMSR-E SSTs (version 4), which show unexplained biases. Since 1999 TMI SSTs appear to have a consistently warm (∼0.2 K) bias relative to the infrared sensors and HadISST1. The time series in (A)ATSR SSTs indicate the possibility of warming trends between 0.1 and 0.2 K decade−1, but the remaining ATSR-1 data are required to confirm this.
    Type of Medium: Online Resource
    ISSN: 1520-0426 , 0739-0572
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2006
    detail.hit.zdb_id: 2021720-1
    detail.hit.zdb_id: 48441-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2008
    In:  Journal of Atmospheric and Oceanic Technology Vol. 25, No. 7 ( 2008-07-01), p. 1197-1207
    In: Journal of Atmospheric and Oceanic Technology, American Meteorological Society, Vol. 25, No. 7 ( 2008-07-01), p. 1197-1207
    Abstract: Using collocations of three different observation types of sea surface temperatures (SSTs) gives enough information to enable the standard deviation of error on each observation type to be derived. SSTs derived from the Advanced Along-Track Scanning Radiometer (AATSR) and Advanced Microwave Scanning Radiometer for Earth Observing System (EOS; AMSR-E) instruments are used, along with SST observations from buoys. Various assumptions are made within the error theory, including that the errors are not correlated, which should be the case for three independent data sources. An attempt is made to show that this assumption is valid and that the covariances between the different observations because of representativity error are negligible. Overall, the spatially averaged nighttime AATSR dual-view three-channel bulk SST observations for 2003 are shown to have a very small standard deviation of error of 0.16 K, whereas the buoy SSTs have an error of 0.23 K and the AMSR-E SST observations have an error of 0.42 K.
    Type of Medium: Online Resource
    ISSN: 1520-0426 , 0739-0572
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2008
    detail.hit.zdb_id: 2021720-1
    detail.hit.zdb_id: 48441-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Endocrinology, Bioscientifica, Vol. 202, No. 2 ( 2009-05-5), p. 223-236
    Abstract: Recently, the G protein-coupled receptor GPR30 has been identified as a novel oestrogen receptor (ER). The distribution of the receptor has been thus far mapped only in the rat central nervous system. This study was undertaken to map the distribution of GPR30 in the mouse brain and rodent peripheral tissues. Immunohistochemistry using an antibody against GPR30 revealed high levels of GPR30 immunoreactivity (ir) in the forebrain (e.g. cortex, hypothalamus and hippocampus), specific nuclei of the midbrain (e.g. the pontine nuclei and locus coeruleus) and the trigeminal nuclei and cerebellum Purkinje layer of the hindbrain in the adult mouse brain. In the rat and mouse periphery, GPR30-ir was detected in the anterior, intermediate and neural lobe of the pituitary, adrenal medulla, renal pelvis and ovary. In situ hybridisation histochemistry using GPR30 riboprobes, revealed intense hybridisation signal for GPR30 in the paraventricular nucleus and supraoptic nucleus (SON) of the hypothalamus, anterior and intermediate lobe of the pituitary, adrenal medulla, renal pelvis and ovary of both rat and mouse. Double immunofluorescence revealed GPR30 was present in both oxytocin and vasopressin neurones of the paraventricular nucleus and SON of the rat and mouse brain. The distribution of GPR30 is distinct from the other traditional ERs and offers an additional way in which oestrogen may mediate its effects in numerous brain regions and endocrine systems in the rodent.
    Type of Medium: Online Resource
    ISSN: 0022-0795 , 1479-6805
    Language: Unknown
    Publisher: Bioscientifica
    Publication Date: 2009
    detail.hit.zdb_id: 1474892-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...