GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 106, No. 11 ( 2005-11-16), p. 732-732
    Abstract: To produce blood platelets, the megakaryocyte (MK) cytoplasm elaborates proplatelets, accompanied by expansion of membrane surface area and dramatic cytoskeletal rearrangements. Invaginated demarcation membranes (DMS) are thought to be the source for the proplatelet and platelet membranes, however, they have THUS far BEEN INSUFFICIENTLY characterized. We first used a mouse model where the cDNA encoding enhanced yellow fluorescence protein (EYFP) with a C-terminally introduced myristoyl acceptor site has been introduced into the GPIIb locus. Heterozygous knock-in mice reveal yellow fluroescent MKs with an internal staining pattern that resembles the reticiulated pattern of the DMS as found in micrographs. Proplatelet-forming MKs reveal contiguous membrane connection between the internally stained membranes and the outlines of the proplatelet shaft resulting in production of fluorescent platelets. We next sought to characterize the internal membranes biochemically and retrovirally infected MKs to express the green fluorescence protein (EGFP) tagged with the pleckstrin homology domain of phospholipase Cδ1 (PLCδ1) which binds with high specificity to phosphatidylinositol(4,5)P2 (PIP2). Young MKs stain the cell periphery as described for most other cell types. Mature MKs, however, stain the internal membranes, whereas the plasma membrane becomes PIP2-negative as shown by co-staining with CD41. Proplatelet membranes emanate from these internal PIP2-positive membranes, proving that the DMS is indeed the membrane reservoir during platelet biogenesis. Appearance of PI-4,5-P2 in the DMS occurs in proximity to PI-5-P-4-kinaseα (PI4Kα), a protein highly expressed in MKs and platelets, as shown by overexpressing EGFP-tagged kinase in primary MKs. In addition, shRNA-mediated loss of PIP4Kα or depletion of its presumptive substrate block DMS development and expansion of MK size. Thus, PI-4,5-P2 is a marker and essential component of internal membranes and is most likely introduced about the non-canonical pathway using PI5P as the substrate. PI-4,5-P2 promotes actin polymerization by activating small GTPases from the Rac/Rho superfamily as well as Wiskott-Aldrich Syndrome (WASp) family proteins. Indeed, PIP2 is associated with filamentous actin when MKs are co-stained with phalloidin. Expression of a dominant-negative N-WASp C-terminal fragment (CA-domain) that inactivats all WASp/WAVE family members leads to Arp3 binding without assembling the complete Arp2/3 complex, thus inhibiting actin filament nucleation. F-Actin staining in the infected MKs reveals a pattern similar to that of MKs treated with pharmacologic dosage of actin polymerization-antagonists like cytochalasin D, which disrupts actin filaments and inhibits proplatelet formation when administered early in MK culture. Dominant-negative WASp impairs proplatelet elaboration similarly, acting at a step past expansion of the cell volume. These observations implicate a signaling pathway wherein PI-4,5-P2 facilitates DMS development and suggests a pathway that links a DMS lipid marker with local assembly of actin fibers as a requirement for platelet biogenesis.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2005
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society of Hematology ; 2005
    In:  Blood Vol. 106, No. 11 ( 2005-11-16), p. 738-738
    In: Blood, American Society of Hematology, Vol. 106, No. 11 ( 2005-11-16), p. 738-738
    Abstract: Megakaryocytes are large cells within the bone marrow that undergo complex fragmentation to release up to thousands of virtually identical blood platelets into the periphery. Each platelet contains a characterisitic microtubule (MT) marginal band that is derived from MT filaments present in long protrusion-like intermediate structures, designated proplatelets, that are immediate precursors of platelets. These MT filaments are generated in the MK periphery, where they require massive mobilization that is supposed to be different from either normal interphase MT nucleation that commonly depends on γ-tubulin in the MT-organizing center. or from MTs in the mitotic spindle that require Ran·GTP, which is generated along condensed chromosomes by the chromatin-asociated guanine nucleotide exchange factor (GEF) RCC1. We first demonstrated that γ-tubulin is absent in most of the mature or proplatelet-forming MKs, where it is therefore unlikely to attribute to the total MT nucleation. MTs are tubular cytoskeletal structures that contain polymerized α- or β-tubulin subunits. Mammalian genomes share 5–6 β-tubulin isotypes of which β1-tubulin is the most divergent, especially in its C-terminal domain. β1-tubulin expression is restricted to late MKs and platelets, where it accounts for most of the β-tubulin in MT filaments. Its ablation in the mouse results in thrombocytopenia, spherocytosis and attenuated platelet function. We therefore sought to identify proteins that bind to β1-tubulin and performed a yeast two-hybrid screen using a MK-derived cDNA library. We identified a cytoplasmic Ran-binding protein, RanBP10, as a factor that associates with cellular MTs and unexpectedly harbors GEF activity toward Ran. Loss of RanBP10 in cultured MKs disrupts MT organization and its overexpression drives accumulation of extranuclear Ran and assembly of thick and abnormally long MTs. RanBP10 thus functions as a localized β-tubulin binding protein that harbors GEF activity toward Ran in the cytoplasm, much like RCC1 in the nucleus. Our results suggest that spatiotemporally restricted generation of Ran·GTP in the cytoplasm organizes specialized MTs required for thrombopoiesis and that RanBP10 provides a molecular link between Ran and non-centrosomal MTs.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2005
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 107, No. 10 ( 2006-05-15), p. 3868-3875
    Abstract: To produce blood platelets, megakaryocytes elaborate proplatelets, accompanied by expansion of membrane surface area and dramatic cytoskeletal rearrangements. The invaginated demarcation membrane system (DMS), a hallmark of mature cells, has been proposed as the source of proplatelet membranes. By direct visualization of labeled DMS, we demonstrate that this is indeed the case. Late in megakaryocyte ontogeny, the DMS gets loaded with PI-4,5-P2, a phospholipid that is confined to plasma membranes in other cells. Appearance of PI-4,5-P2 in the DMS occurs in proximity to PI-5-P-4-kinase α (PIP4Kα), and short hairpin (sh) RNA-mediated loss of PIP4Kα impairs both DMS development and expansion of megakaryocyte size. Thus, PI-4,5-P2 is a marker and possibly essential component of internal membranes. PI-4,5-P2 is known to promote actin polymerization by activating Rho-like GTPases and Wiskott-Aldrich syndrome (WASp) family proteins. Indeed, PI-4,5-P2 in the megakaryocyte DMS associates with filamentous actin. Expression of a dominant-negative N-WASp fragment or pharmacologic inhibition of actin polymerization causes similar arrests in proplatelet formation, acting at a step beyond expansion of the DMS and cell mass. These observations collectively suggest a signaling pathway wherein PI-4,5-P2 might facilitate DMS development and local assembly of actin fibers in preparation for platelet biogenesis.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2006
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Elsevier BV ; 2008
    In:  Journal of Biological Chemistry Vol. 283, No. 20 ( 2008-05), p. 14109-14119
    In: Journal of Biological Chemistry, Elsevier BV, Vol. 283, No. 20 ( 2008-05), p. 14109-14119
    Type of Medium: Online Resource
    ISSN: 0021-9258
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2008
    detail.hit.zdb_id: 2141744-1
    detail.hit.zdb_id: 1474604-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Informa UK Limited ; 2008
    In:  RNA Biology Vol. 5, No. 3 ( 2008-07), p. 115-119
    In: RNA Biology, Informa UK Limited, Vol. 5, No. 3 ( 2008-07), p. 115-119
    Type of Medium: Online Resource
    ISSN: 1547-6286 , 1555-8584
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2008
    detail.hit.zdb_id: 2159587-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2009
    In:  Nature Medicine Vol. 15, No. 8 ( 2009-8), p. 960-966
    In: Nature Medicine, Springer Science and Business Media LLC, Vol. 15, No. 8 ( 2009-8), p. 960-966
    Type of Medium: Online Resource
    ISSN: 1078-8956 , 1546-170X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2009
    detail.hit.zdb_id: 1484517-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Biological Chemistry, Elsevier BV, Vol. 283, No. 22 ( 2008-05), p. 14910-14914
    Type of Medium: Online Resource
    ISSN: 0021-9258
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2008
    detail.hit.zdb_id: 2141744-1
    detail.hit.zdb_id: 1474604-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...