GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2006
    In:  Proceedings of the National Academy of Sciences Vol. 103, No. 2 ( 2006-01-10), p. 379-382
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 103, No. 2 ( 2006-01-10), p. 379-382
    Abstract: The “false thumb” of pandas is a carpal bone, the radial sesamoid, which has been enlarged and functions as an opposable thumb. If the giant panda ( Ailuropoda melanoleuca ) and the red panda ( Ailurus fulgens ) are not closely related, their sharing of this adaptation implies a remarkable convergence. The discovery of previously unknown postcranial remains of a Miocene red panda relative, Simocyon batalleri , from the Spanish site of Batallones-1 (Madrid), now shows that this animal had a false thumb. The radial sesamoid of S. batalleri shows similarities with that of the red panda, which supports a sister-group relationship and indicates independent evolution in both pandas. The fossils from Batallones-1 reveal S. batalleri as a puma-sized, semiarboreal carnivore with a moderately hypercarnivore diet. These data suggest that the false thumbs of S. batalleri and Ailurus fulgens were probably inherited from a primitive member of the red panda family (Ailuridae), which lacked the red panda's specializations for herbivory but shared its arboreal adaptations. Thus, it seems that, whereas the false thumb of the giant panda probably evolved for manipulating bamboo, the false thumbs of the red panda and of S. batalleri more likely evolved as an aid for arboreal locomotion, with the red panda secondarily developing its ability for item manipulation and thus producing one of the most dramatic cases of convergence among vertebrates.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2006
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 318, No. 5848 ( 2007-10-12), p. 245-250
    Abstract: Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the ∼120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2007
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...