GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (4)
  • Medicine  (4)
  • 1
    Online Resource
    Online Resource
    American Society of Hematology ; 2009
    In:  Blood Vol. 114, No. 22 ( 2009-11-20), p. 2529-2529
    In: Blood, American Society of Hematology, Vol. 114, No. 22 ( 2009-11-20), p. 2529-2529
    Abstract: Abstract 2529 Poster Board II-506 A Proto-oncogene FUS (fusion derived from malignant liposarcoma), also known as TLS (translocated in liposarcoma), was originally identified in chromosomal translocation of human soft tissue sarcoma. FUS is also known to be fused with an ETS family transcription factor ERG in human myeloid leukemia with t(16;21) which is associated with poor prognosis. Based on its protein structure, DNA- and RNA-binding activity and involvement in many human cancers as the fusion with various transcription factors, FUS is now grouped with EWS and TAFII68 into TET (FET) oncogene family. Multiple functions have been postulated for FUS, including non-coding-RNA-mediated transcriptional repression, posttranscriptional RNA processing and the maintenance of genomic integrity. Fus-deficient (Fus−/−) mice showed a non-cell-autonomous defect in B lymphocyte development, defective B cell activation and increased sensitivity to radiation in previous studies. However, its physiological function in hematopoiesis remains unknown. In this study we performed detailed analyses of Fus−/− hematopoietic stem cells (HSCs). Fus−/− fetal livers at embryonic day 14.5 exhibited a mild reduction in numbers of hematopoietic stem and progenitor cells compared with the wild type. Disruption of Fus, however, did not grossly affect proliferation or differentiation of hematopoietic progenitors. Of note, Fus−/− HSCs had significantly reduced repopulating activity of hematopoiesis in competitive repopulation assays, and did not repopulate hematopoiesis at all in tertiary recipients. Moreover, Fus−/− HSCs were highly sensitive to radiation both in vitro and in vivo and showed a drastic reduction in numbers in recipient mice after sublethal irradiation. All these findings implicate Fus in the maintenance and radioprotection of HSCs. Studies of chromosome stability, telomere length, apoptosis and levels of reactive oxigen species (ROS) appeared not accountable for the apparent defect of Fus−/− HSCs. However, gene expression profiling identified changes in expression of several genes in Fus−/− HSCs, and dysregulated expression of some of these genes might be responsible for the defective function of Fus−/− HSCs. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2009
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Rockefeller University Press ; 2006
    In:  The Journal of Experimental Medicine Vol. 203, No. 10 ( 2006-10-02), p. 2247-2253
    In: The Journal of Experimental Medicine, Rockefeller University Press, Vol. 203, No. 10 ( 2006-10-02), p. 2247-2253
    Abstract: The polycomb group (PcG) protein Bmi1 plays an essential role in the self-renewal of hematopoietic and neural stem cells. Derepression of the Ink4a/Arf gene locus has been largely attributed to Bmi1-deficient phenotypes in the nervous system. However, its role in hematopoietic stem cell (HSC) self-renewal remained undetermined. In this study, we show that derepressed p16Ink4a and p19Arf in Bmi1-deficient mice were tightly associated with a loss of self-renewing HSCs. The deletion of both Ink4a and Arf genes substantially restored the self-renewal capacity of Bmi1−/− HSCs. Thus, Bmi1 regulates HSCs by acting as a critical failsafe against the p16Ink4a- and p19Arf-dependent premature loss of HSCs. We further identified a novel role for Bmi1 in the organization of a functional bone marrow (BM) microenvironment. The BM microenvironment in Bmi1−/− mice appeared severely defective in supporting hematopoiesis. The deletion of both Ink4a and Arf genes did not considerably restore the impaired BM microenvironment, leading to a sustained postnatal HSC depletion in Bmi1−/−Ink4a-Arf−/− mice. Our findings unveil a differential role of derepressed Ink4a and Arf on HSCs and their BM microenvironment in Bmi1-deficient mice. Collectively, Bmi1 regulates self-renewing HSCs in both cell-autonomous and nonautonomous manners.
    Type of Medium: Online Resource
    ISSN: 1540-9538 , 0022-1007
    RVK:
    Language: English
    Publisher: Rockefeller University Press
    Publication Date: 2006
    detail.hit.zdb_id: 1477240-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Elsevier BV ; 2007
    In:  Current Opinion in Immunology Vol. 19, No. 5 ( 2007-10), p. 503-509
    In: Current Opinion in Immunology, Elsevier BV, Vol. 19, No. 5 ( 2007-10), p. 503-509
    Type of Medium: Online Resource
    ISSN: 0952-7915
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2007
    detail.hit.zdb_id: 2019218-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Society of Hematology ; 2009
    In:  Blood Vol. 114, No. 22 ( 2009-11-20), p. 1423-1423
    In: Blood, American Society of Hematology, Vol. 114, No. 22 ( 2009-11-20), p. 1423-1423
    Abstract: Abstract 1423 Poster Board I-446 The polycomb group (PcG) protein Bmi1 plays an essential role in the maintenance of self-renewing hematopoietic stem cells (HSCs). Derepressed p16Ink4a and p19Arf are tightly associated with a loss of self-renewing capacity of HSCs in Bmi1-deficient mice. Deletion of both Ink4a and Arf genes substantially restores the self-renewal capacity of Bmi1−/− HSCs. Thus, Bmi1 maintains HSCs by acting as a critical failsafe against the p16Ink4a- and p19Arf-dependent senescence pathway. Meanwhile, Bmi1 was originally identified as a collaborating oncogene in the induction of lymphoma and was subsequently reported to be overexpressed in various human cancers including leukemia. Recent studies have demonstrated that PcG proteins bind to multiple regions of the genome and regulate a bunch of target genes. Therefore, we asked whether Bmi1 is essential for leukemic stem cells (LSCs) and tried to identify critical target genes for Bmi1 other than Ink4a and Arf in leukemia. We expressed the MLL-AF9 leukemic fusion gene in purified Lin−Sca-1−c-Kit+CD34+FcγRII/ IIIhi granulocyte/macrophage progenitors (GMPs) from wild-type, Bmi1−/−, Ink4a-Arf−/−, and Bmi1−/−Ink4a-Arf−/− mice and performed in vitro myeloid progenitor replating assay. GMPs from 4 different genetic backgrounds were all immortalized in vitro, although Bmi1-deficient cells showed a slightly decreased replating efficiency. We then infused the immortalized cells into lethally irradiated recipient mice. Mice infused with wild-type and Ink4a-Arf−/− cells developed acute myelogenous leukemia (AML) at 30 to 60 days after infusion. Mice infused with Bmi1−/− cells did not develop leukemia at all. While a significant portion of mice infused with Bmi1−/−Ink4a-Arf−/− cells developed AML, although they took much longer time compared to those mice infused with wild-type and Ink4a-Arf−/− cells. These results indicate that as in HSCs, the Ink4a /Arf locus is one of the major targets for Bmi1 in leukemogenesis. In order to find unknown targets of Bmi1 in LSCs, we compared gene expression profiles of purified c-KithiFcRγII/IIIhiCD34+ cells from Ink4a-Arf−/− and Bmi1−/−Ink4a-Arf−/− immortalized cells. We found that the loss of Bmi1 did not affect the induction of MLL-AF9 target gene expression. By contrast, a number of genes were derepressed in the absence of Bmi1. Among these, Tbx15, a transcriptional co-repressor gene, appeared to be regulated by Bmi1 and a potential tumor suppressor gene in the development of leukemia. Of interest, the majority of derepressed target genes in transformed Bmi1−/−Ink4a-Arf−/− cells, including Tbx15, remained unchanged by re-expression of Bmi1. Correspondingly, re-introduction of Bmi1 to transformed Bmi1−/−Ink4a-Arf−/− cells failed to rescue their compromised leukemogenic activity in vivo. Our findings suggest that Bmi1 is required for faithful epigenetic reprogramming of myeloid progenitors into LSCs by leukemic fusions and contributes to establish LSC-specific transcriptional profiles to confer full leukemogenic activity on LSCs. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2009
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...