GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-09-23
    Description: The Agulhas Current (AC) is the strongest western boundary current in the Southern Hemisphere and is key for weather and climate patterns, both regionally and globally. Its heat transfer into both the midlatitude South Indian Ocean and South Atlantic is of global significance. A new composite coral record (Ifaty and Tulear massive Porites corals), is linked to historical AC sea surface temperature (SST) instrumental data, showing robust correlations. The composite coral SST data start in 1660 and comprise 200 years more than the AC instrumental record. Numerical modelling exhibits that this new coral derived SST record is representative for the wider core region of the AC. AC SSTs variabilities show distinct cooling through the Little Ice Age and warming during the late 18th, 19th and 20th century, with significant decadal variability superimposed. Furthermore, the AC SSTs are teleconnected with the broad southern Indian and Atlantic Oceans, showing that the AC system is pivotal for inter-ocean heat exchange south of Africa.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-05-25
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-06-08
    Description: The Quaternary history of metastable CaCO3 input and preservation within Antarctic Intermediate Water (AAIW) was examined by studying sediments from ODP Holes 818B (745 mbsl) and 817A (1015 mbsl) drilled in the Townsville Trough on the southern slope of the Queensland Plateau. These sites lie within the core of modern AAIW, and near the aragonite saturation depth (-1000 m). Thus, they are well positioned to monitor chemical changes that may have occurred within this watermass during the past 1.6 m.y. The percent of fine aragonite content, percent of fine magnesian calcite content, and percent of whole pteropods (〉355 μm) were used to separate the fine aragonite input signal from the CaCO3 preservation signal. Stable δ 1 8 θ and δ13C isotopic ratios were determined for the planktonic foraminifer Globigerinoides sacculifer and, in Hole 818B, for the benthic foraminifer Cibicidoides spp. to establish the oxygen isotope stratigraphy and to study the relationship between intermediate and shallow water δ13C of Σ C O 2 and the relationship between benthic foraminiferal δ13C and CaCO3 preservation within intermediate waters of the Townsville Trough. Data were converted from depth to age using oxygen isotope stratigraphy, nannostratigraphy, and foraminiferal biostratigraphy. Several long hiatuses and the absence of magnetostratigraphy did not permit time series analysis. The principal results of the CaCO3 preservation study include the following (1) a general increase in CaCO3 preservation between 0.9 and 1.6 Ma; (2) a CaCO3 dissolution maximum near 0.9 Ma, primarily expressed in the Hole 818B fine aragonite record; (3) an abrupt and permanent increase of fine aragonite content between 0.86 and 0.875 Ma in both Holes 818B and 817A probably reflecting a dramatic increase of fine carbonate sediment production on the Queensland Plateau; (4) an improvement in CaCO3 preservation near 0.87 Ma, which accompanied the increase of sediment input, indicated by the first appearance of whole pteropods in the deeper Hole 817A and a "spike" in the percent whole pteropods in Hole 818B; (5) a period of strong CaCO3 dissolution during the mid-Brunhes Chron from 0.36 to 0.41 Ma; and (6) a complex CaCO3 preservation pattern between 0.36 Ma and the present characterized by a general increase in CaCO3 preservation through time with good preservation during interglacial stages and poor preservation during glacial stages. The long-term aragonite preservation histories for Holes 818B and 817A appear to be similar in general shape, although different in detail, to CaCO3 preservation records from the deep Indian and central equatorial Pacific oceans as well as from intermediate water sites in the Bahamas and the Maldives. All of these areas have experienced CaCO3 dissolution at about 0.9 Ma and during the mid-Brunhes Chron. However, the late Quaternary (0 to 0.36 Ma) glacial to interglacial preservation pattern in Holes 818B and 817A is out of phase with CaCO3 preservation records for sediments deposited in Pacific deep and bottom waters. The sharp increase in bank production and export from the Queensland Plateau and the coincident improvement of CaCO3 preservation between 0.86 and 0.875 Ma may have been synchronous with the initiation of the Great Barrier Reef and roughly coincides with an increase in carbonate accumulation on the Bahama banks, in the western North Atlantic Ocean, and on Mururoa atoll, in the central South Pacific Ocean. The development of these reef systems during the middle Quaternary may be related to the transition in the frequency and amplitude of global sea level change from 41 k.y. low amplitude cycles prior to 0.9 Ma to 100 k.y. high amplitude cycles after 0.73 Ma. Carbon isotopic analyses show that benthic foraminiferal δ13C values (Cibicidoides spp.) have been heavier than planktonic foraminiferal δ13C values (G. sacculifer) throughout most of the last 0.54 m.y., which may indicate that 13C-enriched intermediate water (AAIW) occupied the Townsville Trough during much of the late Quaternary. Furthermore, both planktonic and benthic foraminiferal δ13C values are often observed to be heaviest during interglacial to glacial transitions, and lightest during glacial to interglacial transitions. We suggest that this pattern is the result of changes in the preformed δ13C of XCO2 of AAIW and may reflect changes in nutrient utilization by primary producers in Antarctic surface waters, changes in the δ13C of upwelled Circumpolar Deep Water, or changes in the extent and/or temperature of equilibration between surface water and atmospheric CO2 within the Antarctic Polar Frontal Zone (the source area for AAIW). Finally, the poor correlation between percent of whole pteropods (aragonite preservation) and δ13C of Cibicidoides spp. may be the result of a decoupling of δ13C from CO2 due to the numerous and complex variables that combine to produce the preformed δ13C of AAIW.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Springer
    In:  International Journal of Earth Sciences, 91 . pp. 482-489.
    Publication Date: 2018-05-30
    Description: In this paper we show that the development of the sediment architecture at the leeward toe-of-slope of Great Bahama Bank (Ocean Drilling Project Leg 166, Bahama Transect) during the last 6 Ma is not only a response to sea-level fluctuations, but also to major paleo-oceanographic and climatic changes. A major sequence boundary close to the Miocene/Pliocene boundary (dated at 5.6–5.4 Ma) is interpreted to reflect a major sea-level drop that was followed by a sea-level rise, which led to the re-flooding of the Mediterranean Sea at the end of the Messinian and increasing sea-surface temperatures at Great Bahama Bank. Distinct erosional horizons occurred during the Pliocene (dated at 4.6 and 3.3–3.6 Ma) related to sea-level change and the intensification of the Gulf Stream when the emergence of the Isthmus of Panama reached a critical threshold. The Gulf Stream brings warm, saline and nutrient-poor waters to the Bahamas. Starting at the Early–Late Pliocene boundary at 3.6 Ma this paleo-oceanographic reorganization in combination with enhanced sea-level fluctuations associated with the Late Pliocene main intensification in Northern Hemisphere Glaciation (since 3.2 Ma) led to (1) a gradual change from a ramp-type to a flat-topped type morphology, and (2) a change from a skeletal to a non-skeletal-dominated sedimentary system (mainly peloidal). Increased sea-level fluctuations during the second half of the Pleistocene led to an intensified high stand-shedding depositional pattern within the surrounding basins.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-11-08
    Description: We reconstruct the hydrologic history of the tropical western Indian Ocean by calculating the δ18Oseawater from coupled coral Sr/Ca and δ18O measurements in a massive Porites coral from Mayotte (Comoros) between 1881 and 1994. We found that the precipitation-evaporation balance varies naturally on time scales of 5–6 years and 18–25 years. High (low) SSTs are associated with positive (negative) δ18Oseawater implying that atmospheric variability is linked with remote climate modes in the Indian Ocean and the tropical/extratropical Pacific Ocean. Warm El Niño-Southern Oscillation events are associated with a negative freshwater balance at Mayotte. This case study demonstrates that a much denser network of δ18Oseawater reconstructions is crucial for understanding the spatial patterns of hydrological conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...