GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Chicago :Haus Publishing,
    Keywords: Climatic changes -- Environmental aspects. ; Electronic books.
    Description / Table of Contents: There is no doubt: climate change is happening and mankind is increasingly influencing the climate.
    Type of Medium: Online Resource
    Pages: 1 online resource (228 pages)
    Edition: 1st ed.
    ISBN: 9781906598518
    Series Statement: Sustainability Project Series
    DDC: 363.73874
    Language: English
    Note: Intro -- Contents -- Editor's Foreword -- Author's Foreword -- The Scientific Principles -- 1 The Climate and the Earth System -- 1.1 Weather and Climate -- 1.2 The Oceans -- 1.3 Sea Ice -- 1.4 The Continental Ice Sheets -- 1.5 Vegetation -- 2 The Greenhouse Effect -- 2.1 The Composition of the Atmosphere -- 2.2 The Natural Greenhouse Effect -- 2.3 The Anthropogenic Greenhouse Effect -- 2.4 The Global Carbon Balance -- 2.5 The Ozone Problem -- 3 Climate Variability and Prediction -- 3.1 Why Does the Climate Fluctuate? -- 3.2 El Niño/Southern Oscillation -- 3.3 The North Atlantic Oscillation (NAO) -- 3.4 The Influence of Volcanoes -- 3.5 The Ice Age Cycles -- 3.6 Abrupt Climate Changes -- 3.7 The Predictability of the Climate -- 4 Climate Modeling -- 4.1 Climate Models -- 4.2 Clouds and Precipitation -- 4.3 The Role of Condensation Trails -- 4.4 The Lorenz Model -- 4.5 What Is the Gulf Stream and How Will It Behave in the Future? -- The Climate of the 20th and 21st Centuries -- 5 Man's Influence on the Climate -- 5.1 The Intergovernmental Panel on Climate Change (IPCC) -- 5.2 What Changes Can Already Be Seen Today? -- 5.3 Whose Fault Are the Changes? -- 5.4 Mankind's Fingerprint -- 6 Climate Change Scenarios for the Future -- 6.1 The Inertia of the Climate -- 6.2 What Will the Future Bring? -- 6.3 The Climate in Europe in the Mid-21st Century -- 6.4 How Much Will the Sea Level Rise? -- 6.5 The Acidification of the Oceans -- Strategies for the Future -- 7 The Public Discourse -- 7.1 The Role of the Media -- 7.2 The Skeptics -- 8 What must be done? -- 8.1 The Kyoto Protocol -- 8.2 Greenhouse Gas Emissions -- 8.3 Options for Action -- 8.4 How Do We Deal with the Climate Problem? -- Glossary -- Bibliography.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Kiel : Universitätsbibliothek Kiel
    Keywords: Modell ; Hochschulschrift ; Äquatorialatlantik ; Tropen ; Klima
    Description / Table of Contents: Until today, the Tropical Atlantic Ocean is a region which is difficult to represent in numerical models. Most of the current coupled general circulation models (CGCM) show a strong warm bias in the eastern Tropical Atlantic and are unable to reproduce the observed variability especially directly along the equator. In this work various sensitivity experiments with the Kiel Climate Model (KCM) are described. A largely reduced warm bias and an improved seasonal cycle in the eastern Tropical Atlantic are simulated in one particular version of KCM. By comparing the stable and well-tested standard version with the sensitivity experiments and the modified version, mechanisms contributing to the reduction of the eastern Atlantic warm bias are identified and compared to what has been proposed in literature. The errors in the spring and early summer zonal winds associated with erroneous zonal precipitation seems to be the key mechanism, and large-scale coupled ocean-atmosphere feedbacks play an important role in reducing the warm bias. Improved winds in boreal spring cause the summer cooling in the eastern Tropical Atlantic via shoaling of the thermocline and increased upwelling, and hence reduced sea surface temperature (SST). Reduced SSTs in the summer suppress convection and favor the development of low-level cloud cover in the eastern Tropical Atlantic region. Subsurface ocean structure is shown to be improved, and potentially influences the development of the bias. The strong warm bias along the southeastern coastline is related to underestimation of low-level cloud cover and the associated overestimation of surface shortwave radiation in the same region. Therefore, in addition to the primarily wind forced response at the equator both changes in surface shortwave radiation and outgoing longwave radiation contribute significantly to reduction of the warm bias from summer to fall. The better representation of the mean annual cycle in the Tropical Atlantic also improves the variability in the Tropical Atlantic. The different steps of the Bjerknes feedback mechanism are more realistically simulated in those version of KCM that have an better mean state. The improved representation of equatorial Atlantic variability is believed to be responsible for better potential predictability. No predictability that is significantly above persistence is found when hindcasting equatorial Atlantic SST between 1971 and 2004 using different configurations of KCM.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (VIII, 116 Seiten, 4,82 MB) , graph. Darst
    Edition: Online-Ausg.
    DDC: 500
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...