GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Coupled climate variability  (1)
  • Eddy resolving simulations  (1)
  • Connectivity
  • Diffusion
  • 2005-2009  (2)
Document type
Years
Year
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Elsevier B.V., 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Physica D: Nonlinear Phenomena 237 (2008): 584-599, doi:10.1016/j.physd.2007.09.025.
    Description: A simple heuristic model of coupled decadal ocean–atmosphere modes in middle latitudes is developed. Previous studies have treated atmospheric intrinsic variability as a linear stochastic process modified by a deterministic coupling to the ocean. The present paper takes an alternative view: based on observational, as well as process modeling results, it represents this variability in terms of irregular transitions between two anomalously persistent, high-latitude and low-latitude jet-stream states. Atmospheric behavior is thus governed by an equation analogous to that describing the trajectory of a particle in a double-well potential, subject to stochastic forcing. Oceanic adjustment to a positional shift in the atmospheric jet involves persistent circulation anomalies maintained by the action of baroclinic eddies; this process is parameterized in the model as a delayed oceanic response. The associated sea-surface temperature anomalies provide heat fluxes that affect atmospheric circulation by modifying the shape of the double-well potential. If the latter coupling is strong enough, the model’s spectrum exhibits a peak at a periodicity related to the ocean’s eddy-driven adjustment time. A nearly analytical approximation of the coupled model is used to study the sensitivity of this behavior to key model parameters.
    Description: This research was supported by National Science Foundation grant OCE-02-221066 (all coauthors) and the Department of Energy grant DE-FG-03-01ER63260 (MG and SK).
    Keywords: Coupled climate variability ; Stochastic models ; Double-well potential
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Ocean Modelling 30 (2009): 155-168, doi:10.1016/j.ocemod.2009.06.009.
    Description: A new high-resolution Eulerian numerical method is proposed for modelling quasigeostrophic ocean dynamics in eddying regimes. The method is based on a novel, second-order non-dissipative and lowdispersive conservative advection scheme called CABARET. The properties of the new method are compared with those of several high-resolution Eulerian methods for linear advection and gas dynamics. Then, the CABARET method is applied to the classical model of the double-gyre ocean circulation and its performance is contrasted against that of the common vorticity-preserving Arakawa method. In turbulent regimes, the new method permits credible numerical simulations on much coarser computational grids.
    Description: Supports from the Royal Society of London and from the Mary Sears Visitor Grant are acknowledged by SK with gratitude. The work of VG was supported by the Russian Foundation for Basic Research (RFBR), grant 06-01-00819a. Funding for PB was provided by the NSF grant 0725796.
    Keywords: Mesoscale ocean dynamics ; Eddy resolving simulations ; High-resolution schemes
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...