GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Channels  (1)
  • Galapagos Islands  (1)
  • 2005-2009  (2)
Document type
Keywords
Years
  • 2005-2009  (2)
Year
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 6 (2005): Q08005, doi:10.1029/2005GC000912.
    Description: Submarine lava flows are the building blocks of young oceanic crust. Lava erupted at the ridge axis is transported across the ridge crest in a manner dictated by the rheology of the lava, the characteristics of the eruption, and the topography it encounters. The resulting lava flows can vary dramatically in form and consequently in their impact on the physical characteristics of the seafloor and the architecture of the upper 50–500 m of the oceanic crust. We have mapped and measured numerous submarine channelized lava flows at the East Pacific Rise (EPR) crest 9°–10°N that reflect the high-effusion-rate and high-flow-velocity end-member of lava eruption and transport at mid-ocean ridges. Channel systems composed of identifiable segments 50–1000 m in length extend up to 3 km from the axial summit trough (AST) and have widths of 10–50 m and depths of 2–3 m. Samples collected within the channels are N-MORB with Mg# indicating eruption from the AST. We produce detailed maps of lava surface morphology across the channel surface from mosaics of digital images that show lineated or flat sheets at the channel center bounded by brecciated lava at the channel margins. Modeled velocity profiles across the channel surface allow us to determine flux through the channels from 0.4 to 4.7 × 103 m3/s, and modeled shear rates help explain the surface morphology variation. We suggest that channelized lava flows are a primary mechanism by which lava accumulates in the off-axis region (1–3 km) and produces the layer 2A thickening that is observed at fast and superfast spreading ridges. In addition, the rapid, high-volume-flux eruptions necessary to produce channelized flows may act as an indicator of the local magma budget along the EPR. We find that high concentrations of channelized lava flows correlate with local, across-axis ridge morphology indicative of an elevated magma budget. Additionally, in locations where channelized flows are located dominantly to the east or west of the AST, the ridge crest is asymmetric, and layer 2A appears to thicken over a greater distance from the AST toward the side of the ridge crest where the channels are located.
    Description: This work was supported by NSF grant OCE-9819261 (to H.S., M.A.T., and D.J.F.) as well as the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Penzance Endowed Discretionary Fund.
    Keywords: Channels ; Lava ; Lava morphology ; Ridge-crest ; Submarine
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 4255619 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 8 (2007): Q03010, doi:10.1029/2006GC001464.
    Description: A compilation of high-resolution EM300 multibeam bathymetric and existing MR1 side-scan sonar data was used to investigate the volcanic morphology of the flanks of the western Galápagos Islands. The data portray an assortment of constructional volcanic features on the shallow to deep submarine flanks of Fernandina, Isabela, and Santiago Islands, including rift zones and groups of cones that are considered to be the primary elements in constructing the archipelagic apron. Ten submarine rift zones were mapped, ranging in length from 5 to 20 km, comparable in length to western Canary Island rift zones but significantly shorter than Hawaiian submarine rift zones. A detailed analysis of the northwestern Fernandina submarine rift, including calculated magnetization from a surface-towed magnetic study, suggests that the most recent volcanism has focused at the shallow end of the rift. Small submarine volcanic cones with various morphologies (e.g., pointed, cratered, and occasionally breached) are common in the submarine western Galápagos both on rift zones and on the island flanks where no rifts are present. At depths greater than ∼3000 m, large lava flow fields in regions of low bathymetric relief have been previously identified as a common seafloor feature in the western Galápagos by Geist et al. (2006); however, their source(s) remained enigmatic. The new EM300 data show that a number of the deep lava flows originate from small cones along the mid-lower portion of the NW submarine rift of Fernandina, suggesting that the deep flows owe their origin, at least in part, to submarine rift zone volcanism.
    Description: Data collected on TN188 was funded by NSF grant OCE0326148 and NOAA grant NA04OAR460009 to S.M.W. Support for data collected on previous multibeam and MR1 cruises was provided by NSF grants OCE9811504 and OCE0002461 (D.J.F.).
    Keywords: Galapagos Islands ; EM300 multibeam bathymetry ; MR1 side-scan sonar ; Submarine volcanic cones ; Submarine volcanic rift zones ; Deep lava flows
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...