GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 184-1146; 202-1237; COMPCORE; Composite Core; Cyclostratigraphy; Joides Resolution; Leg184; Leg202; Ocean Drilling Program; ODP; South China Sea; South Pacific Ocean  (1)
  • Aegean Sea; GeoTü; GeoTu_SL112; GeoTu_SL123; GeoTu_SL148; GeoTü SL112; GeoTü SL123; GeoTü SL148; Gravity corer (Kiel type); Levantine Sea; M51/3; Meteor (1986); Paleoceanography at Tübingen University; SL  (1)
  • 2005-2009  (2)
Document type
Keywords
Publisher
Years
  • 2005-2009  (2)
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Holbourn, Ann E; Kuhnt, Wolfgang; Schulz, Michael; Flores, José-Abel; Andersen, Nils (2007): Orbitally-paced climate evolution during the middle Miocene “Monterey” carbon-isotope excursion. Earth and Planetary Science Letters, 261(3-4), 534-550, https://doi.org/10.1016/j.epsl.2007.07.026
    Publication Date: 2024-02-05
    Description: One of the most enigmatic features of Cenozoic long-term climate evolution is the long-lasting positive carbon-isotope excursion or “Monterey Excursion”, which started during a period of global warmth after 16.9 Ma and ended at not, vert, similar 13.5 Ma, approximately 400 kyr after major expansion of the Antarctic ice-sheet. We present high-resolution (1-9 kyr) astronomically-tuned climate proxy records in two complete sedimentary successions from the northwestern and southeastern Pacific (ODP Sites 1146 and 1237), which shed new light on the middle Miocene carbon-isotope excursion and associated climatic transition over the interval 17.1-12.7 Ma. We recognize three distinct climate phases with different imprints of orbital variations into the climatic signals (1146 and 1237 d18O, d13C; 1237 XRF Fe, fraction 〉 63 µm): (1) climate optimum prior to 14.7 Ma characterized by minimum ice volume and prominent 100 and 400 kyr variability, (2) long-term cooling from 14.7 to 13.9 Ma, principally driven by obliquity and culminating with rapid cryosphere expansion and global cooling at the onset of the last and most pronounced d13C increase, (3) “Icehouse” mode after 13.9 Ma with distinct 100 kyr variability and improved ventilation of the deep Pacific. The “Monterey” carbon-isotope excursion (16.9-13.5 Ma) consists overall of nine 400 kyr cycles, which show high coherence with the long eccentricity period. Superposed on these low-frequency oscillations are high-frequency variations (100 kyr), which closely track the amplitude modulation of the short eccentricity period. In contrast to d13C, the d18O signal additionally shows significant power in the 41 kyr band, and the 1.2 Myr amplitude modulation of the obliquity cycle is clearly imprinted in the 1146 d18O signal. Our results suggest that eccentricity was a prime pacemaker of middle Miocene climate evolution through the modulation of long-term carbon budgets and that obliquity-paced changes in high-latitude seasonality favored the transition into the “Icehouse” climate.
    Keywords: 184-1146; 202-1237; COMPCORE; Composite Core; Cyclostratigraphy; Joides Resolution; Leg184; Leg202; Ocean Drilling Program; ODP; South China Sea; South Pacific Ocean
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-02
    Description: Temporal and regional changes in paleoproductivity and paleoceanography in the eastern Mediterranean Sea during the past 12 kyr were reconstructed on the basis of the stable oxygen and carbon isotope composition of the epibenthic Planulina ariminensis and the shallow endobenthic Uvigerina mediterranea from three sediment cores of the Aegean Sea and Levantine Basin. The Younger Dryas is characterized by high d18O values, indicating enhanced salinities and low temperatures of deep water masses at all investigated sites. With the onset of the Holocene, d18O records show a continuous decrease towards the onset of sapropel S1 formation, mainly caused by a freshening and warming of surface waters at deep water formation sites. In the middle and late Holocene, the similarity of d18O values from the southern Aegean Sea and Levantine Basin suggests the influence of isotopically identical deep water masses. By contrast, slightly higher d18O values are observed the northern Aegean Sea, which probably point to lower temperatures of North Aegean deep waters. The epifaunal d13C records reveal clear changes in sources and residence times of eastern Mediterranean deep waters associated with period of S1 formation. Available data for the early and late phase of sapropel S1 formation and for the interruption around 8.2 kyr display drops by 0.5 and 1.5 per mil, indicating the slow-down of deep water circulation and enhanced riverine input of isotopically light dissolved inorganic carbon from terrestrial sources into the eastern Mediterranean Sea. The decrease in epifaunal d13C signals is particularly expressed in the southern Aegean Sea and Levantine Basin, while it is less pronounced in the northern Aegean Sea. This points to a strong reduction in deep water exchange rates in the southern areas, but the persistence of local deep water formation in the northern Aegean Sea. The d13C values of U. mediterranea records reveal temporal and regional differences in paleoproductivity during the past 12 kyr, with rather eutrophic and mesotrophic conditions in the North Aegean Sea and southeast Levantine Basin, respectively, while the South Aegean Sea is characterized by rather oligotrophic conditions. After S1 formation, increasing d13C values reflect a progressive decrease in surface water productivity in the eastern Mediterranean Sea during the middle and late Holocene. In the northern Aegean Sea, this time interval is marked by repetitive changes in organic matter fluxes documented by significant fluctuations in the d13C signal of U. mediterranea on millennial- to multi-centennial time scales. These fluctuations can be linked to short-term changes in river runoff driven by northern hemisphere climatic variability.
    Keywords: Aegean Sea; GeoTü; GeoTu_SL112; GeoTu_SL123; GeoTu_SL148; GeoTü SL112; GeoTü SL123; GeoTü SL148; Gravity corer (Kiel type); Levantine Sea; M51/3; Meteor (1986); Paleoceanography at Tübingen University; SL
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...