GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer  (2)
  • 2005-2009  (2)
Document type
Years
Year
  • 1
    Publication Date: 2019-09-23
    Description: Low pO(2) values have been measured in the perivitelline fluids (PVF) of marine animal eggs on several occasions, especially towards the end of development, when embryonic oxygen consumption is at its peak and the egg case acts as a massive barrier to diffusion. Several authors have therefore suggested that oxygen availability is the key factor leading to hatching. However, there have been no measurements of PVF pCO(2) so far. This is surprising, as elevated pCO(2) could also constitute a major abiotic stressor for the developing embryo. As a first attempt to fill this gap in knowledge, we measured pO(2), pCO(2) and pH in the PVF of late cephalopod (Sepia officinalis) eggs. We found linear relationships between embryo wet mass and pO(2), pCO(2) and pH. pO(2) declined from 〉 12 kPa to less than 5 kPa, while pCO(2) increased from 0.13 to 0.41 kPa. In the absence of active accumulation of bicarbonate in the PVF, pH decreased from 7.7 to 7.2. Our study supports the idea that oxygen becomes limiting in cephalopod eggs towards the end of development; however, pCO(2) and pH shift to levels that have caused significant physiological disturbances in other marine ectothermic animals. Future research needs to address the physiological adaptations that enable the embryo to cope with the adverse abiotic conditions in their egg environment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-09-03
    Description: Earlier work found cuttlefish (Sepia officinalis) ventilatory muscle tissue to progressively switch to an anaerobic mode of energy production at critical temperatures (T c) of 7.0 and 26.8°C. These findings suggested that oxygen availability limits thermal tolerance. The present study was designed to elucidate whether it is the ventilatory apparatus that sets critical temperature thresholds during acute thermal stress. Routine metabolic rate (rmr) rose exponentially between 11 and 23°C, while below (8°C) and above (26°C) this temperature range, rmr was significantly depressed. Ventilation frequency (f V) and mean mantle cavity pressure (MMP) followed an exponential relationship within the entire investigated temperature range (8–26°C). Oxygen extraction from the ventilatory current (EO2) decreased in a sigmoidal fashion with temperature, falling from 〉 90% at 8°C to 32% at 26°C. Consequently, ventilatory minute volume (MVV) increased by a factor of 20 from 7 to 150% body weight min−1 in the same temperature interval. Increases in MMP and MVV resulted in ventilatory muscle power output (P out) increasing by a factor of 〉 80 from 0.03 to 2.4 mW kg−1 animal. Nonetheless, costs for ventilatory mechanics remain below 1.5% rmr in the natural thermal window of the population (English Channel, 9–17°C), owing to very low MMPs of 〈 0.05 kPa driving the ventilatory stream, and may maximally rise to 8.6% rmr at 26°C. Model calculations suggest that the ventilatory system can maintain high arterial PO2 values of 〉 14 kPa over the entire temperature interval. We therefore conclude that the cuttlefish ventilation system is probably not limiting oxygen transfer during acute thermal stress. Depression of rmr, well before critical temperatures are being reached, is likely caused by circulatory capacity limitations and not by fatigue of ventilatory muscle fibres.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...