GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-07
    Description: In spring 2004 and 2005 we performed two sets of experiments with Baltic sprat (Sprattus sprattus balticus Schneider) eggs and larvae from the Bornholm Basin simulating ten different temperature scenarios. The goal of the present study was to analyse and parameterise temperature effects on the duration of developmental stages, on the timing of important ontogenetic transitions, growth during the yolk sac phase as well as on the survival success of eggs and early larval stages. Egg development and hatching showed exponential temperature dependence. No hatching was observed above 14.7°C and hatching success was significantly reduced below 3.4°C. Time to eye pigmentation, as a proxy for mouth gape opening, decreased with increasing temperatures from 17 days post hatch at 3.4°C to 7 days at 13°C whereas the larval yolk sac phase was shortened from 20 to 10 days at 3.8 and 10°C respectively. Maximum survival duration of non-fed larvae was 25 days at 6.8°C. Comparing the experimental results of Baltic sprat with existing information on sprat from the English Channel and North Sea differences were detected in egg development rate, thermal adaptation and in yolk sac depletion rate (YSDR). Sprat eggs from the English Channel showed significantly faster development and the potential to develop at temperatures higher than 14.7°C. North Sea sprat larvae were found to have a lower YSDR compared to larvae from the Baltic Sea. In light of the predictions for global warming, Baltic sprat stocks could experience improved conditions for egg development and survival
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-03
    Description: We investigated the impact of copepods on the seston community in a mesocosm set-up, and assessed how the changes in food quantity, quality and size affected the condition of the grazers, by measuring the RNA:DNA ratios in different developmental stages of Calanus finmarchicus. Manipulated copepod densities did not affect the particulate carbon concentration in the mesocosms. On the other hand, chlorophyll a content increased with higher copepod densities, and increasing densities had a positive effect on seston food quality in the mesocosms, measured as C:N ratios and ω3:ω6 fatty acid ratios. These food quality indicators were significantly correlated to the nutritional status of C. finmarchicus. In contrast to our expectations, these results suggest a lower copepod growth potential on higher quality food. However, in concordance with earlier studies, we found that when copepods were in high densities the large particles (〉1000 µm3) decreased and that the smaller particles (〈1000 µm3) increased in number. These patterns were closely linked to the condition of C. finmarchicus, which were of better condition (RNA:DNA ratios) with increasing biovolumes of large particles, and, conversely, lower RNA:DNA ratios with increasing biovolumes of smaller particles. Consequentially, the selective grazing by copepods stimulated increased biovolumes of smaller plankton, and this increase was responsible for the increased food quality, in terms of C:N and ω3:ω6 ratios. Thus, we conclude that the decreasing growth potentials of C. finmarchicus were a result of a decrease of favourably sized food particles, induced by copepod grazing.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...