GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society of Hematology  (3)
  • 2005-2009  (3)
  • 1
    In: Blood, American Society of Hematology, Vol. 106, No. 11 ( 2005-11-16), p. 1983-1983
    Abstract: In advanced-phase CML, resistance to imatinib mesylate is frequently associated with point mutations in the Bcr-Abl kinase domain. New, highly potent Abl kinase inhibitors such as AMN107 and BMS-354824, have recently entered clinical trials. Data from analyses of resistant patients will be available not before a large number of resistant patients will have been treated within clinical trials. Therefore, it will be important to generate specific resistance profiles for each compound prior to its therapeutic application. Using a cell-based screening method for resistance of Bcr-Abl positive leukemia to Abl kinase inhibitors, we generated a resistance profile for AMN107 and compared it to the resistance profile of imatinib mesylate. In contrast to imatinib, resistance to AMN107 was associated with a very limited spectrum of Bcr-Abl kinase mutations. While 26 exchanges at 21 positions occured with imatinib, the AMN107 screen revealed eight different exchanges at seven amino acid positions, with four exchanges affecting the P-loop. Novel mutations which have never been observed with imatinib, either in vitro or in resistant patients, emerged in the presence of AMN107 including an F359 exchange to isoleucine and a Q252H/S349L double mutant. In contrast to imatinib, the frequency of resistant colonies dramatically decreased with increasing AMN107 concentrations. Rarely emerging resistant colonies at a concentration of 400 nM AMN107 exclusively contained T315I. With the exception of T315I, all mutations that were identified were effectively suppressed when AMN107 was increased to 2000 nM, a concentration which is achieved in plasma in treated patients. Thus, in this system, increasing the AMN107 concentration to 400 nM prevented the emergence of resistant colonies, with the exception of T315I. Our findings suggest that AMN107 might be superior to imatinib in terms of the development of resistance. Also, AMN107 at clinically relevant concentrations may overcome imatinib resistant disease, including cases with expression of P-loop mutations. However, our study indicates that clinical resistance to AMN107 may be associated with the predominant emergence of T315I. Using this or similar approaches, it will be possible to provide information that translates into combinatorial and sequential treatment strategies and to determine critical plasma concentrations for mutations that might occur during treatment.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2005
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 109, No. 5 ( 2007-03-01), p. 2112-2120
    Abstract: Drug resistance resulting from emergence of imatinib-resistant BCR-ABL point mutations is a significant problem in advanced-stage chronic myelogenous leukemia (CML). The BCR-ABL inhibitor, nilotinib (AMN107), is significantly more potent against BCR-ABL than imatinib, and is active against many imatinib-resistant BCR-ABL mutants. Phase 1/2 clinical trials show that nilotinib can induce remissions in patients who have previously failed imatinib, indicating that sequential therapy with these 2 agents has clinical value. However, simultaneous, rather than sequential, administration of 2 BCR-ABL kinase inhibitors is attractive for many reasons, including the theoretical possibility that this could reduce emergence of drug-resistant clones. Here, we show that exposure of a variety of BCR-ABL+ cell lines to imatinib and nilotinib results in additive or synergistic cytotoxicity, including testing of a large panel of cells expressing BCR-ABL point mutations causing resistance to imatinib in patients. Further, using a highly quantifiable bioluminescent in vivo model, drug combinations were at least additive in antileukemic activity, compared with each drug alone. These results suggest that despite binding to the same site in the same target kinase, the combination of imatinib and nilotinib is highly efficacious in these models, indicating that clinical testing of combinations of BCR-ABL kinase inhibitors is warranted.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2007
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 109, No. 11 ( 2007-06-01), p. 5011-5015
    Abstract: Patients with advanced stages of chronic myeloid leukemia (CML) often manifest imatinib mesylate resistance associated with point mutations in BCR-ABL. AMN107 is a new higher-potency inhibitor of BCR-ABL. To identify mutations in BCR-ABL that could result in resistance to AMN107, a cDNA library of BCR-ABL mutants was introduced into Ba/F3 cells followed by selection in AMN107 (0.125-0.5 μM). A total of 86 individual, drug-resistant colonies were recovered, and the SH3, SH2, and kinase domains of BCR-ABL were sequenced. A total of 46 colonies had single point mutations in BCR-ABL, with a total of 17 different mutations, all within the kinase domain. The other 40 colonies had multiple point mutations and were not analyzed further. Each of the 17 single point mutants were reconstructed by site-directed mutagenesis of native BCR-ABL and found to be approximately 2.5- to 800-fold more resistant to AMN107 than native BCR-ABL. The mutations included 6 known imatinib mesylate–resistant mutations, including T315I, which showed complete resistance to AMN107. Interestingly, most AMN107-resistant mutants were also resistant to imatinib mesylate. These results may predict some of the resistance mutations that will be detected in clinical trials with this kinase inhibitor.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2007
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...