GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (8)
  • 2005-2009  (8)
Material
Publisher
  • American Association for Cancer Research (AACR)  (8)
Language
Years
  • 2005-2009  (8)
Year
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2006
    In:  Cancer Epidemiology, Biomarkers & Prevention Vol. 15, No. 11 ( 2006-11-01), p. 2317-2321
    In: Cancer Epidemiology, Biomarkers & Prevention, American Association for Cancer Research (AACR), Vol. 15, No. 11 ( 2006-11-01), p. 2317-2321
    Abstract: Background: Helicobacter pylori infection potently induces methylation of CpG islands in gastric mucosae, which is considered to decrease to a certain level after active H. pylori infection discontinues. Noncancerous gastric mucosae of H. pylori–negative cases with a gastric cancer had higher methylation levels than those of H. pylori–negative healthy individuals. Here, using cases with multiple gastric cancers, we analyzed whether the higher methylation levels correlated with the higher risk of gastric cancers. Methods: Twenty-six healthy volunteers (HV), 30 cases with a single well-differentiated gastric cancer (S cases), and 32 cases with multiple well-differentiated gastric cancers (M cases) were recruited. H. pylori infection status was analyzed by the culture method. Methylation levels were quantified by real-time methylation-specific PCR of seven CpG islands. Results: In H. pylori–negative individuals, significant increasing trends were present in the order of HV, S cases, and M cases for FLNc and HAND1 methylation levels (P & lt; 0.01, Spearman's rank-order test). Furthermore, the FLNc methylation level of M cases was significantly higher than that of S cases (P & lt; 0.01, t test). Even adjusted by the extent of gastric atrophy, the FLNc methylation level retained a significant increasing trend (P = 0.03). In contrast, methylation levels in H. pylori–positive individuals were increased to various degrees in all the three groups. Conclusions: In H. pylori–negative individuals, methylation levels in gastric mucosae significantly increased in cases with a single gastric cancer and more in cases with multiple gastric cancers. Quantitative analysis of methylation levels is a promising risk marker for gastric cancers. (Cancer Epidemiol Biomarkers Prev 2006;15(11):2317–21)
    Type of Medium: Online Resource
    ISSN: 1055-9965 , 1538-7755
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2006
    detail.hit.zdb_id: 2036781-8
    detail.hit.zdb_id: 1153420-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2005
    In:  Cancer Research Vol. 65, No. 1 ( 2005-01-01), p. 11-17
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 65, No. 1 ( 2005-01-01), p. 11-17
    Abstract: The unmethylated or methylated status of individual CpG sites is faithfully copied into daughter cells. Here, we analyzed the fidelity in replicating their methylation statuses in cancer cells. A single cell was clonally expanded, and methylation statuses of individual CpG sites were determined for an average of 12.5 DNA molecules obtained from the expanded population. By counting the deviation from the original methylation patterns inferred, the number of errors was measured. The analysis was done in four gastric cancer cell lines for five CpG islands (CGI), and repeated six times (total 1,495 clones sequenced). HSC39 and HSC57 showed error rates & lt;1.0 × 10−3 errors per site per generation (99.90-100% fidelity) for all the five CGIs. In contrast, AGS showed significantly elevated error rates, mainly due to increased de novo methylation, in three CGIs (1.6- to 3.2-fold), and KATOIII showed a significantly elevated error rate in one CGI (2.2-fold). By selective amplification of fully methylated DNA molecules by methylation-specific PCR, those were stochastically detected in KATOIII and AGS but never in HSC39 and HSC57. When methylation of entire CGIs was examined for eight additional CGIs, KATOIII and AGS had frequent methylation, whereas HSC39 and HSC57 had few. KATOIII and AGS had four and eight times, respectively, as high expression levels of DNMT3B as HSC39. These data showed that some cancer cells have decreased fidelity in replicating methylation patterns in some CGIs, and that the decrease could lead to methylation of the entire CGIs.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2005
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2009
    In:  Molecular Cancer Therapeutics Vol. 8, No. 5 ( 2009-05-01), p. 989-990
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 8, No. 5 ( 2009-05-01), p. 989-990
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2009
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 67, No. 19 ( 2007-10-01), p. 9568-9576
    Abstract: Colon cancers have been shown to develop after accumulation of multiple genetic and epigenetic alterations with changes in global gene expression profiles, contributing to the establishment of widely diverse phenotypes. Transcriptional and posttranscriptional regulation of gene expression by small RNA species, such as the small interfering RNA and microRNA and the RNA-induced silencing complex (RISC), is currently drawing major interest with regard to cancer development. SND1, also called Tudor-SN and p100 and recently reported to be a component of RISC, is among the list of highly expressed genes in human colon cancers. In the present study, we showed remarkable up-regulation of SND1 mRNA in human colon cancer tissues, even in early-stage lesions, and also in colon cancer cell lines. When mouse Snd1 was stably overexpressed in IEC6 rat intestinal epithelial cells, contact inhibition was lost and cell growth was promoted, even after the cells became confluent. Intriguingly, IEC6 cells with high levels of Snd1 also showed an altered distribution of E-cadherin from the cell membrane to the cytoplasm, suggesting loss of cellular polarity. Furthermore, the adenomatous polyposis coli (Apc) protein was coincidentally down-regulated, with no significant changes in the Apc mRNA level. Immunohistochemical analysis using chemically induced colonic lesions developed in rats revealed overexpression of Snd1 not only in colon cancers but also in aberrant crypt foci, putative precancerous lesions of the colon. Up-regulation of SND1 may thus occur at a very early stage in colon carcinogenesis and contribute to the posttranscriptional regulation of key players in colon cancer development, including APC and β-catenin. [Cancer Res 2007;67(19):9568–76]
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2007
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2006
    In:  Molecular Cancer Research Vol. 4, No. 2 ( 2006-02-01), p. 125-133
    In: Molecular Cancer Research, American Association for Cancer Research (AACR), Vol. 4, No. 2 ( 2006-02-01), p. 125-133
    Abstract: Pierisin-1 identified from the cabbage butterfly, Pieris rapae, is a novel mono-ADP-ribosylating toxin that transfers the ADP-ribose moiety of NAD at N2 of dG in DNA. Resulting mono-ADP-ribosylated DNA adducts cause mutations and the induction of apoptosis. However, little is known about checkpoint responses elicited in mammalian cells by the formation of such bulky DNA adducts. In the present study, it was shown that DNA polymerases were blocked at the specific site of mono-ADP-ribosylated dG, which might lead to the replication stress. Pierisin-1 treatment of HeLa cells was found to induce an intra-S-phase arrest through both ataxia telangiectasia mutated (ATM) and Rad3-related (ATR) and ATM pathways, and ATR pathway also contributes to a G2-M-phase delay. In the colony survival assays, Rad17−/− DT40 cells showed greater sensitivity to pierisin-1-induced cytotoxicity than wild-type and ATM−/− DT40 cells, possibly due to defects of checkpoint responses, such as the Chk1 activation. Furthermore, apoptotic 50-kb DNA fragmentation was observed in the HeLa cells, which was well correlated with occurrence of phosphorylation of Chk2. These results thus suggest that pierisin-1 treatment primarily activates ATR pathway and eventually activates ATM pathway as a result of the induction of apoptosis. From these findings, it is suggested that mono-ADP-ribosylation of DNA causes a specific type of fork blockage that induces checkpoint activation and signaling. (Mol Cancer Res 2006;4(2):125–33)
    Type of Medium: Online Resource
    ISSN: 1541-7786 , 1557-3125
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2006
    detail.hit.zdb_id: 2097884-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 12, No. 3 ( 2006-02-01), p. 989-995
    Abstract: Introduction: Risk prediction of gastric cancers is important to implement appropriate screening procedures. Although aberrant DNA methylation is deeply involved in gastric carcinogenesis, its induction by Helicobacter pylori, a strong gastric carcinogen, is unclear. Here, we analyzed the effect of H. pylori infection on the quantity of methylated DNA molecules in noncancerous gastric mucosae and examined its association with gastric cancer risk. Experimental Design: Gastric mucosae were collected from 154 healthy volunteers (56 H. pylori negative and 98 H. pylori positive) and 72 cases with differentiated-type gastric cancers (29 H. pylori negative and 43 H. pylori positive) by endoscopy. The numbers of DNA molecules methylated and unmethylated for eight regions of seven CpG islands (CGI) were quantified by quantitative PCR after bisulfite modification, and fractions of methylated molecules (methylation levels) were calculated. Results: Among healthy volunteers, methylation levels of all the eight regions were 5.4- to 303-fold higher in H. pylori positives than in H. pylori negatives (P & lt; 0.0001). Methylation levels of the LOX, HAND1, and THBD promoter CGIs and p41ARC exonic CGI were as high as 7.4% or more in H. pylori–positive individuals. Among H. pylori–negative individuals, methylation levels of all the eight regions were 2.2- to 32-fold higher in gastric cancer cases than in age-matched healthy volunteers (P ≤ 0.01). Among H. pylori–positive individuals, methylation levels were highly variable, and that of only HAND1 was significantly increased in gastric cancer cases (1.4-fold, P = 0.02). Conclusions: It was indicated that H. pylori infection potently induces methylation of CGIs to various degrees. Methylation levels of specific CGIs seemed to reflect gastric cancer risk in H. pylori–negative individuals.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2006
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 65, No. 7 ( 2005-04-01), p. 2610-2616
    Abstract: ACI/Seg (ACI) rats develop prostate cancers spontaneously with aging, similar to humans. Here, to identify genes involved in prostate cancer susceptibility, we did linkage analysis and oligonucleotide microarray analysis. Linkage analysis was done using 118 effective rats, and prostate cancer susceptibility 1 (Pcs1), whose ACI allele dominantly induced prostate cancers, was mapped on chromosome 19 [logarithm of odds (LOD) score of 5.0]. PC resistance 1 (Pcr1), whose ACI allele dominantly and paradoxically suppressed the size of prostate cancers, was mapped on chromosome 2 (LOD score of 5.0). When linkage analysis was done in 51 rats with single or no macroscopic testicular tumors, which had larger prostates and higher testosterone levels than those with bilateral testicular tumors, Pcs2 and Pcr2 were mapped on chromosomes 20 and 1, respectively. By oligonucleotide microarray analysis with 8,800 probe sets and confirmation by quantitative reverse transcription-PCR, only two genes within these four loci were found to be differentially expressed & gt;1.8-fold. Membrane metalloendopeptidase (Mme), known to inhibit androgen-independent growth of prostate cancers, on Pcr1 was expressed 2.0- to 5.5-fold higher in the ACI prostate, in accordance with its paradoxical effect. Cdkn1a on Pcs2 was expressed 1.5- to 4.5-fold lower in the ACI prostate. Additionally, genes responsible for testicular tumors and unilateral renal agenesis were mapped on chromosomes 11 and 14, respectively. These results showed that prostate cancer susceptibility of ACI rats involves at least four loci, and suggested Mme and Cdkn1a as candidates for Pcr1 and Pcs2.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2005
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2007
    In:  Cancer Epidemiology, Biomarkers & Prevention Vol. 16, No. 1 ( 2007-01-01), p. 151-156
    In: Cancer Epidemiology, Biomarkers & Prevention, American Association for Cancer Research (AACR), Vol. 16, No. 1 ( 2007-01-01), p. 151-156
    Abstract: Mutagenic/carcinogenic 9-(4′-aminophenyl)-9H-pyrido[3,4-b]indole [aminophenylnorharman (APNH)] is formed from norharman and aniline in the presence of cytochrome P450 3A4/1A2. Because both precursors are widely distributed in the environment, human exposure is unavoidable. To clarify APNH formation in the human body, amounts of the compound in 24-h human urine collected from smokers and nonsmokers, eating a normal diet, were analyzed by liquid chromatography/electrospray ionization tandem mass spectrometry. In addition, norharman and aniline were also analyzed by high-performance liquid chromatography and gas chromatography, respectively. APNH could be detected in all urine samples at levels 49 to 449 pg for smokers and 21 to 594 pg for nonsmokers per 24-h urine, respectively. The amounts of norharman and aniline were 46 to 185 ng and 0.70 to 8.10 μg for smokers and 52 to 447 ng and 0.49 to 5.72 μg for nonsmokers, respectively, per 24-h urine (none of the levels differing significantly between smokers and nonsmokers). To exclude exogenous exposure to norharman and aniline, we analyzed the levels of APNH, norharman, and aniline in urine samples collected from inpatients receiving parenteral alimentation. Similar to the healthy volunteers, all urine samples contained 12 to 338 pg of APNH, 6 to 75 ng of norharman, and 0.33 to 1.86 μg of aniline per 24-h urine. These results suggest that APNH should be considered as a novel endogenous mutagen/carcinogen; thus, it is very important to determine the biological significance of this carcinogen for human cancer development. (Cancer Epidemiol Biomarkers Prev 2007;16(1):151–6)
    Type of Medium: Online Resource
    ISSN: 1055-9965 , 1538-7755
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2007
    detail.hit.zdb_id: 2036781-8
    detail.hit.zdb_id: 1153420-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...