GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (5)
  • 2005-2009  (5)
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 67, No. 3 ( 2007-02-01), p. 890-900
    Abstract: Pilocytic astrocytomas (PAs) are the most common glioma in children. Whereas many PAs are slow-growing or clinically indolent, others exhibit more aggressive features with tumor recurrence and death. To identify genetic signatures that might predict PA clinical behavior, we did gene expression profiling on 41 primary PAs arising sporadically and in patients with neurofibromatosis type 1 (NF1). Whereas no expression signature was found that could discriminate clinically aggressive or recurrent tumors from more indolent cases, PAs arising in patients with NF1 did exhibit a unique gene expression pattern. In addition, we identified a gene expression signature that stratified PAs by location (supratentorial versus infratentorial). Lastly, we also identified a gene expression pattern common to PAs and normal mouse astrocytes and neural stem cells from these distinct brain regions as well as a gene expression pattern shared between PAs and another human glial tumor (ependymoma) arising supratentorially compared with those originating in the posterior fossa. These results suggest that glial tumors share an intrinsic, lineage-specific molecular signature that reflects the brain region in which their nonmalignant predecessors originated. [Cancer Res 2007;67(3):890–900]
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2007
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 67, No. 10 ( 2007-05-15), p. 4790-4799
    Abstract: Neurofibromatosis type 1 (NF1) is a common autosomal dominant tumor predisposition syndrome in which affected individuals develop astrocytic brain tumors (gliomas). To determine how the NF1 gene product (neurofibromin) regulates astrocyte growth and motility relevant to glioma formation, we have used Nf1-deficient primary murine astrocytes. Nf1−/− astrocytes exhibit increased protein translation and cell proliferation, which are mediated by Ras-dependent hyperactivation of the mammalian target of rapamycin (mTOR) protein, a serine/threonine protein kinase that regulates ribosomal biogenesis, protein translation, actin cytoskeleton dynamics, and cell proliferation. In this study, we show that Nf1-deficient astrocytes have fewer actin stress fibers and exhibit increased cell motility compared with wild-type astrocytes, which are rescued by pharmacologic and genetic mTOR inhibition. We further show that mTOR-dependent regulation of actin stress fiber formation, motility, and proliferation requires rapamycin-sensitive activation of the Rac1 GTPase but not elongation factor 4E-binding protein 1/S6 kinase. Nf1−/− astrocytes also exhibit increased protein translation and ribosomal biogenesis through increased expression of the nucleophosmin (NPM) nuclear-cytoplasmic shuttling protein. We found that NPM expression in Nf1−/− astrocytes was blocked by rapamycin in vitro and in vivo and that expression of a dominant-negative NPM mutant protein in Nf1−/− astrocytes rescued actin stress fiber formation and restored cell motility and proliferation to wild-type levels. Together, these data show that neurofibromin regulates actin cytoskeleton dynamics and cell proliferation through a mTOR/Rac1-dependent signaling pathway and identify NPM as a critical mTOR effector mediating these biological properties in Nf1-deficient astrocytes. [Cancer Res 2007;67(10):4790–9]
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2007
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2007
    In:  Cancer Research Vol. 67, No. 4 ( 2007-02-15), p. 1609-1617
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 67, No. 4 ( 2007-02-15), p. 1609-1617
    Abstract: Nucleophosmin (B23) is a nucleolar phosphoprotein that has been implicated in numerous cellular processes. In particular, nucleophosmin interacts with nucleolar components of newly synthesized ribosomes to promote ribosome nuclear export. Nucleophosmin is a classic mitogen-induced protein, with changes in its expression correlating with growth factor stimulation. In this study, we examined the underlying mechanism of nucleophosmin induction and showed that hyperproliferative signals emanating from oncogenic H-RasV12 cause tremendous increases in nucleophosmin protein expression. Nucleophosmin protein accumulation was dependent on mammalian target of rapamycin (mTOR) activation, as rapamycin completely prevented nucleophosmin induction. Consistent with this finding, genetic ablation of Tsc1, a major upstream inhibitor of mTOR, resulted in nucleophosmin protein induction through increased translation of existing nucleophosmin mRNAs. Increases in nucleophosmin protein accumulation were suppressed by reintroduction of TSC1. Induction of nucleophosmin through Tsc1 loss resulted in a greater pool of actively translating ribosomes in the cytoplasm, higher overall rates of protein synthesis, and increased cell proliferation, all of which were dependent on efficient nucleophosmin nuclear export. Nucleophosmin protein accumulation in the absence of Tsc1 promoted the nuclear export of maturing ribosome subunits, providing a mechanistic link between TSC1/mTOR signaling, nucleophosmin-mediated nuclear export of ribosome subunits, protein synthesis levels, and cell growth. [Cancer Res 2007;67(4):1609–17]
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2007
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2005
    In:  Cancer Research Vol. 65, No. 7 ( 2005-04-01), p. 2755-2760
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 65, No. 7 ( 2005-04-01), p. 2755-2760
    Abstract: Individuals with the tumor predisposition syndrome, neurofibromatosis 1 (NF1), are prone to development of nervous system tumors, including neurofibromas and pilocytic astrocytomas. Based on the ability of the NF1 gene product (neurofibromin) to function as a GTPase activating protein for RAS, initial biologically based therapies for NF1-associated tumors focused on the use of RAS inhibitors, but with limited clinical success. In an effort to identify additional targets for therapeutic drug design in NF1, we used an unbiased proteomic approach to uncover unanticipated intracellular signaling pathways dysregulated in Nf1-deficient astrocytes. We found that the expression of proteins involved in promoting ribosome biogenesis was increased in the absence of neurofibromin. In addition, Nf1-deficient astrocytes exhibit high levels of mammalian target of rapamycin (mTOR) pathway activation, which was inhibited by blocking K-RAS or phosphatidylinositol 3-kinase activation. This mTOR pathway hyperactivation was reflected by high levels of ribosomal S6 activation in both Nf1 mutant mouse optic nerve gliomas and in human NF1-associated pilocytic astrocytoma tumors. Moreover, inhibition of mTOR signaling in Nf1−/− astrocytes abrogated their growth advantage in culture, restoring normal proliferative rates. These results suggest that mTOR pathway inhibition may represent a logical and tractable biologically based therapy for brain tumors in NF1.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2005
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2005
    In:  Cancer Research Vol. 65, No. 21 ( 2005-11-01), p. 9843-9850
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 65, No. 21 ( 2005-11-01), p. 9843-9850
    Abstract: Individuals affected with the neurofibromatosis 1 (NF1) tumor predisposition syndrome are prone to the development of multiple nervous system tumors, including optic pathway gliomas (OPG). The NF1 tumor suppressor gene product, neurofibromin, functions as a Ras GTPase-activating protein, and has been proposed to regulate cell growth by inhibiting Ras activity. Recent studies from our laboratory have shown that neurofibromin also regulates the mammalian target of rapamycin activity in a Ras-dependent fashion, and that the rapamycin-mediated mammalian target of rapamycin inhibition ameliorates the Nf1−/− astrocyte growth advantage. Moreover, Nf1-deficient astrocytes exhibit increased protein translation. As part of a larger effort to identify protein markers for NF1-associated astrocytomas that could be exploited for therapeutic drug design, we did an objective proteomic analysis of the cerebrospinal fluid from genetically engineered Nf1 mice with optic glioma. One of the proteins found to be increased in the cerebrospinal fluid of OPG-bearing mice was the eukaryotic initiation factor-2α binding protein, methionine aminopeptidase 2 (MetAP2). In this study, we show that Nf1 mouse OPGs and NF1-associated human astrocytic tumors, but not sporadic pilocytic or other low-grade astrocytomas, specifically expressed high levels of MetAP2. In addition, we show that Nf1-deficient astrocytes overexpress MetAP2 in vitro and in vivo, and that treatment with the MetAP2 inhibitor fumagillin significantly reduces Nf1−/− astrocyte proliferation in vitro. These observations suggest that MetAP2 is regulated by neurofibromin, and that MetAP2 inhibitors could be potentially employed to treat NF1-associated tumor proliferation.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2005
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...