GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (5)
  • AGU (American Geophysical Union)  (2)
  • 2005-2009  (7)
Document type
Publisher
Years
Year
  • 1
    Publication Date: 2018-03-08
    Description: New 3-D seismic investigations carried out across the Sevastopol mud volcano in the Sorokin Trough present 3-D seismic data of a mud volcano in the Black Sea for the first time. The studies allow us to image the complex three-dimensional morphology of a collapse structured mud volcano and to propose an evolution model. The Sevastopol mud volcano is located above a buried diapiric structure with two ridges and controlled by fluid migration along a deep fault system, which developed during the growth of the diapirs in a compressional tectonic system. Overpressured fluids initiated an explosive eruption generating the collapse depression of the Sevastopol mud volcano. Several cones were formed within the depression by subsequent quiet mud extrusions. Although gas hydrates have been recovered at various mud volcanoes in the Sorokin Trough, no gas hydrates were sampled at the Sevastopol mud volcano. A BSR (bottom-simulating reflector) is missing in the seismic data; however, high-amplitude reflections (bright spots) observed above the diapiric ridge near the mud volcano at a relatively constant depth correspond to the approximate depth of the base of the gas hydrate stability zone (BGHSZ). Thus we suggest that gas hydrates are present locally where gas/fluid flow occurs related to mud volcanism, i.e., above the diapir and close to the feeder channel of the mud volcano. Depth variations of the bright spots of up to 200 ms TWT might be caused by temperature variations produced by variable fluid flow.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-08-04
    Description: Newly acquired bathymetric and seismic reflection data have revealed mass-transport deposits (MTDs) on the northeastern Cretan margin in the active Hellenic subduction zone. These include a stack of two submarine landslides within the Malia Basin with a total volume of approximately 4.6 km(3) covering an area of about 135 km(2). These two MTDs have different geometry, internal deformations and transport structures. The older and stratigraphic lower MTD is interpreted as a debrite that fills a large part of the Malia Basin, while the second, younger MTD, with an age of at least 12.6 cal. ka B.P., indicate a thick, lens-shaped, partially translational landslide. This MTD comprises multiple slide masses with internal structure varying from highly deformed to nearly undeformed. The reconstructed source area of the older MTD is located in the westernmost Malia Basin. The source area of the younger MTD is identified in multiple headwalls at the slope-basin-transition in 450 m water depth. Numerous faults with an orientation almost parallel to the southwest-northeast-trending basin axis occur along the northern and southern boundaries of the Malia Basin and have caused a partial steepening of the slope-basin-transition. The possible triggers for slope failure and mass-wasting include (i) seismicity and (ii) movement of the uplifting island of Crete from neotectonics of the Hellenic subduction zone, and (iii) slip of clay-mineral-rich or ash-bearing layers during fluid involvement. (c) 2009 Elsevier B.V. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-24
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-03
    Description: Lake Van is the fourth largest terminal lake in the world (volume 607 km(3), area 3570 km(2), maximum depth 460 m), extending for 130 km WSW-ENE on the Eastern Anatolian High Plateau, Turkey. The sedimentary record of Lake Van, partly laminated, has the potential to obtain a long and continuous continental sequence that covers several glacial-interglacial cycles (ca 500 kyr). Therefore, Lake Van is a key site within the International Continental Scientific Drilling Program (ICDP) for the investigation of the Quaternary climate evolution in the Near East ('PALEOVAN'). As preparation for an ICDP drilling campaign, a site survey was carried out during the past years. We collected 50 seismic profiles with a total length of similar to 850 km to identify continuous undisturbed sedimentary sequences for potential ICDP locations. Based on the seismic results, we cored 10 different locations to water depths of up to 420 m. Multidisciplinary scientific work at positions of a proposed ICDP drill site included measurements of magnetic susceptibility, physical properties, stable isotopes, XRF scans, and pollen and spores. This core extends back to the Last Glacial Maximum (LGM), a more extended record than all the other Lake Van cores obtained to date. Both coring and seismic data do not show any indication that the deepest part of the lake (Tatvan Basin, Ahlat Ridge) was dry or almost dry during past times. These results show potential for obtaining a continuous undisturbed, long continental palaeoclimate record. In addition, this paper discusses the potential of 'PALEOVAN' to establish new results on the dynamics of lake level fluctuations, noble gas concentration in pore water of the lake sediment, history of volcanism and volcanic activities based on tephrostratigraphy, and paleoseismic and earthquake activities. (C) 2009 Elsevier Ltd. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-06
    Description: We employ a combined interpretation of Hydrosweep swath bathymetry and high resolution multi-channel seismic reflection data to investigate the development of Cap Timiris Canyon, a newly discovered submarine canyon offshore Mauritania. The dominantly V-shaped and deeply entrenched canyon exhibits many fluvial features including dendritic and meander patterns, cut-off loops and terraces, and is presently incising. Distal meander patterns, confined within a narrow fault-controlled corridor, show several stages of evolution, the latest of which is dominated by a down-system meander-loop migration. Terraces exhibit a variety of internal structures suggesting they originated through different processes including sliding/slumping, uplift-induced incision and lateral accretion. We ascribe canyon origin to an ancient river system in the adjacent presently arid Sahara Desert that breached the shelf during a Plio/Pleistocene sea level lowstand and delivered sediment directly into the slope area. Our data suggest that the initial invading unchannelised sheet of sand-rich turbidity flows initiated canyon formation by gradually mobilising along linear seafloor depressions and fault-controlled zones of weakness. We propose that the development of canyon morphology and structure was influenced by the stages of active flow of the coupling river system, and hence could act as a proxy for understanding the paleo-climatic evolution of a ‘green’ Sahara since Plio/Pleistocene times.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-09-21
    Description: Three pockmarks named "Hydrate Hole", "Black Hole", and "Worm Hole" were studied in the northern Congo Fan area at water depths around 3100 m. The cross-disciplinary investigations include seafloor observations by TV-sled, sampling by TV-guided grab and multicorer as well as gravity coring, in addition to hydroacoustic mapping by a swath system, a parametric sediment echosounder and a deep-towed sidescan sonar. The pockmarks are morphologically complex features consisting of one or more up to 1000 m wide and 10-15 m deep depressions revealed by swath-mapping. High reflection amplitudes in the sediment echosounder records indicate the presence of a 25-30 m thick shallow sediment section with gas hydrates, which have been recovered by gravity corer. Hydrates, chemosynthetic communities, and authigenic carbonates clearly indicate fluid flow from depths, which we propose to be mainly in the form of ascending gas bubbles rather than advection of methane-rich porewater. Evidence for seepage at the seafloor is confined to small areas within the seafloor depressions and was revealed by characteristic backscatter facies. Small meter-scale sized depressions signified as "pits" exist in or close to the pockmarks but seafloor observations did not reveal evidence for the presence of typical seep organisms or authigenic carbonates. Areas of intermediate back-scatter were inhabited by vesicomyid clams in soft sediments. High backscatter was associated with vestimentiferan tubeworms (Siboglinidae) and authigenic carbonates. We discuss the three different environments "pits", "vesicomyid clams", "vestimentifera/carbonate" in the light of differences in the geochemical setting. Pits are probably formed by escaping gas bubbles but seepage is too transient to sustain chemosynthetic life. Vesicomyid clams are present in sediments with gas hydrate deposits. However, the hydrates occur several meters below the surface indicating a lower flux compared to the vestimentifera/carbonate environment. In the latter environment, accumulated carbonates and clam shells indicate that fine grained particles have been eroded away. Gas hydrates were found in this environment at depths below about 50 cm suggesting the highest supply with methane compared to the other environments. (C) 2007 Elsevier B.V. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-08-04
    Description: Continental shelves represent areas of highest economical and ecological importance. Nevertheless, these sedimentary systems remainpoorly understood due to a complex interplay of various factors and processeswhich results in highly individual construction schemes. Previous studies of sedimentary shelf systems have mainly focused on a limited number of cores, retrieved from Holocene fine-grained depocentres. As such, the relation between shelf architecture and sedimentary history remains largely obscure. Here,we present newdata fromthe NW Iberian shelf comprising shallow-seismic profiles, a large number of sediment cores, and an extended set of radiocarbon dates to reveal the Late Quaternary evolution of a low-accumulation shelf system in detail. OntheNWIberian shelf, threemain seismic units are identified. These overly a prominent erosional unconformity on top of the basement. The lowermost Unit 1 is composed of maximal 75-m thick, Late Tertiary to Pleistocene deposits. The youngest sediments of this unit are related to the last glacial sea-level fall. Unit 2 was controlled by the deglacial sea-level rise and shows a maximumthickness of 15 m. Finally, Unit 3 comprises deposits related to the late stage of sea-level rise and the modern sea-level highstand with a thickness of 4 m in mid-shelf position. Two pronounced seismic reflectors separate these main units from each other. Their origin is related to (1) exposure and ravinement processes during lower sea level, and (2) to reworking and re-deposition of coarse sediments during subsequent sea-level rise. According to the sediment core ground-truthing, sediments of the Late Tertiary to Pleistocene unit predominantly display homogenous fine sands with exceptional occurrences of palaeosols that indicate an ancient exposure surface. Fine sands which were deposited in the run of the last sea-level rise show a time-transgressive retrogradational development. The seismic reflectors, bounding the individual units, appear in the cores as 0.1 to 1-m thick deposits consisting either of shell gravels or siliceous coarse sands with gravels. The modern sea-level highstand stage is characterised by zonal deposition of mud forming a mud belt in mid-shelf position, and sediment starvation on outer shelf zones. Radiocarbon ages indicate that this mud beltwas the main depocentre for river-supplied fine material on the NWIberian shelf at least over the past 5.32 ka BP. The initial onset of this depocentre is proposed to be related to a shift in the balance between rate of sea-level rise and amount of terrigenous sediment supply. Various other stratigraphical shelf reconstructions reveal analogies in architecturewhich indicate that timing and shaping of the individual units on low-accumulation shelves is fundamentally controlled by eustatic sea-level changes. Other factors of local importance such as differential elevation of the basement and the presence of morphological barriers formed by rocky outcrops on the seafloor have additionally modifying influence on the sedimentary processes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...