GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (2)
  • AGU (American Geophysical Union)  (1)
  • 2005-2009  (3)
Document type
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 34 . L24702.
    Publication Date: 2018-02-15
    Description: A Holocene Gulf of Guinea record of riverine runoff, based on Ba/Ca in tests of a shallow-dwelling planktic foraminifer, and sea surface temperature (SST), based on Mg/Ca, reveals centennial-scale instabilities in West African monsoon (WAM) precipitation and eastern equatorial Atlantic (EEA) thermal conditions. The long-term Holocene climate trend is characterized by a warm and wet early-mid Holocene and gradual drying and cooling during the late Holocene. Superimposed on this trend are numerous centennial scale drops in precipitation during the early-mid Holocene. The greatest declines in early Holocene monsoon precipitation were accompanied by significant SST cooling in the EEA and correlate with drops in air temperature over Greenland and fresh water outbursts into the North Atlantic (NA). This observation suggests that early Holocene climate instabilities in the NA were closely linked to changes in the WAM. The strong imprint of NA events in summer monsoon precipitation suggests that these events were not confined to winter-time. The late Holocene does not show large amplitude changes in riverine runoff at the centennial level. The relatively stable late Holocene conditions likely reflect a weakening and stabilization of the monsoon system, probably due to diminished influence of the NA region due to a reduction in ice sheet.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: We present a high-resolution (∼ 60–110 yr) multi-proxy record spanning Marine Isotope Stage 3 from IMAGES Core MD01-2378 (13°04.95′ S and 121°47.27′ E, 1783 m water depth), located in the Timor Sea, off NW Australia. Today, this area is influenced by the Intertropical Convergence Zone, which drives monsoonal winds during austral summer and by the main outflow of the Indonesian Throughflow, which represents a key component of the global thermohaline circulation system. Thus, this core is ideally situated to monitor the linkages between tropical and high latitude climate variability. Benthic δ18O data (Planulina wuellerstorfi) clearly reflect Antarctic warm events (A1–A4) as recorded by the EPICA Byrd and Dronning Maud Land ice cores. This southern high latitude signal is transferred by deep and intermediate water masses flowing northward from the Southern Ocean into the Indian Ocean. Planktonic δ18O shows closer affinity to northern high latitudes planktonic and ice core records, although only the longer-lasting Dansgaard–Oeschger warm events, 8, 12, 14, and 16–17 are clearly expressed in our record. This northern high latitude signal in the surface water is probably transmitted through atmospheric teleconnections and coupling of the Asian–Australian monsoon systems. Benthic foraminiferal census counts suggest a coupling of Antarctic cooling with carbon flux patterns in the Timor Sea. We relate increasing abundances of carbon-flux sensitive species at 38–45 ka to the northeastward migration of the West Australian Current frontal area. This water mass reorganization is also supported by concurrent decreases in Mg/Ca and planktonic δ18O values (Globigerinoides ruber white).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Elsevier
    In:  Global and Planetary Change, 48 (1/3). pp. 165-174.
    Publication Date: 2019-09-23
    Description: The water masses of the Arctic Ocean shelf regions are significantly influenced by river water and sea-ice processes. Since river water is highly depleted in δ18O relative to marine waters as well as to sea-ice, the δ18O composition and salinity of a water sample can be used to separate the different water sources. In this paper the freshwater distribution on the Kara, Laptev and the Beaufort shelves are discussed based on δ18O and salinity data. Depending on the average depth the observed fields of salinity and δ18O values are different for each region. But comparing the overall δ18O and salinity correlations reveals a remarkable similarity for these three Arctic shelf regions. On all discussed Arctic shelves bottom water masses are formed by sea-ice processes. And remnants of these bottom water masses are found on all shelves during summer at a similar salinity of about 30.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...