GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • 2005-2009  (1)
  • 1990-1994  (1)
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The Bacillus subtilis ilv-leu operon involved in the biosynthesis of branched-chain amino acids is under negative regulation mediated by TnrA and CodY, which recognize and bind to their respective cis-elements located upstream of the ilv-leu promoter. This operon is known to be under CcpA-dependent positive regulation. We have currently identified a catabolite-responsive element (cre) for this positive regulation (bases −96 to −82; +1 is the ilv-leu transcription initiation base) by means of DNase I-footprinting in vitro, and deletion and base-substitution analyses of cre. Under nitrogen-rich growth conditions in glucose-minimal medium supplemented with glutamine and amino acids, CcpA and CodY exerted positive and negative regulation of ilv-leu, respectively, but TnrA did not function. Moreover, CcpA and CodY were able to function without their counteracting regulation of each other, although the CcpA-dependent positive regulation did not overcome the CodY-dependent negative regulation. Furthermore, under nitrogen-limited conditions in glucose-minimal medium with glutamate as the sole nitrogen source, CcpA and TnrA exerted positive and negative regulation, respectively, but CodY did not function. This CcpA-dependent positive regulation occurred without the TnrA-dependent negative regulation. However, the TnrA-dependent negative regulation did not occur without the CcpA-dependent positive regulation, raising the possibility that this negative regulation might decrease the CcpA-dependent positive regulation. The physiological role of this elaborate transcription regulation of the B. subtilis ilv-leu operon in overall metabolic regulation in this organism is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0730-2312
    Keywords: phosphotransferase system ; HPr ; sugar transport ; gram-positive bacteria ; protein kinase ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: HPr of the Gram-positive bacterial phosphotransferase system (PTS) can be phosphorylated by an ATP-dependent protein kinase on a serine residue or by PEP-dependent Enzyme I on a histidyl residue. Both phosphorylation events appear to influence the metabolism of non-PTS carbon sources. Catabolite repression of the gluconate (gnt) operon of B. subtilis appears to be regulated by the former phosphorylation event, while glycerol kinase appears to be regulated by the latter phosphorylation reaction. The extent of our understanding of these processes will be described. © 1993 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...